PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 449-466

PROPAGATION PROPERTIES OF THE SPP MODES IN NANOSCALE NARROW METALLIC GAP, CHANNEL, AND HOLE GEOMETRIES

By F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong

Full Article PDF (645 KB)

Abstract:
The propagation properties of surface plasmon polaritons (SPP) modes in nanoscale narrow metallic structures: gap, channel, and rectangular-hole waveguides, are analyzed by the complex effective dielectric constant approximation. The results show that all the SPP modes exist below the critical frequency where the real part of metal permittivity is negative unity. It is found that both cutoff frequency and cutoff height exist in channel waveguide and rectangularhole waveguide. The channel and rectangular-hole waveguides have different propagation properties at cutoffs due to their different cutoff conditions. Compared with the gap waveguide, the channel waveguide has shorter propagation length and better confinement when the operation frequency is near the critical frequency, but has longer propagation length and worse confinement when the operation frequency is far from the critical frequency. Among the three waveguides, the rectangular-hole waveguide has the best confinement factor and the shortest propagation length. The comprehensive analysis for the gap, channel, and rectangular-hole waveguides can provide some guidelines in the design of subwavelength optical devices.

Citation: (See works that cites this article)
F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203
http://www.jpier.org/pier/pier.php?paper=07070203

References:
1. Zayats, A. V., Smolyaninov, II, and A. A. Maradudin, "Nanooptics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

2. Prasad, P. N., Nanophotonics, Wiley-Interscience, New Jersey, 2004.

3. Ozbay, E., "Plasmonics: merging photonics and electronics at manoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

4. Chang, C. K., et al., "Experimental analysis of surface plasmon behavior in metallic circular slits," Applied Physics Letters, Vol. 90, No. 6, 2007.

5. Gordon, R., L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Transactions on Nanotechnology, Vol. 5, No. 3, 291-294, 2006.
doi:10.1109/TNANO.2006.874057

6. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmonenhanced light transmission through planar metallic films," Physical Review B, Vol. 74, No. 15, 2006.
doi:10.1103/PhysRevB.74.155407

7. Xiao, S., N. A. Mortensen, and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," Journal of the European Optical Society, Vol. 2, No. 7, 2007.

8. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmonenhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
doi:10.1163/156939305775696801

9. Bouhelier, A., et al., "Plasmoncoupled tip-enhanced near-field optical microscopy," Journal of Microscopy, Vol. 210, No. 3, 220-224, 2003.
doi:10.1046/j.1365-2818.2003.01108.x

10. Ditlbacher, H., et al., "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett, Vol. 25, No. 8, 563-565, 2000.
doi:10.1364/OL.25.000563

11. Luo, X., "Surface plasmon resonant interference nanolithography technique," Applied Physics Letters, Vol. 84, No. 23, 4780-4782, 2004.
doi:10.1063/1.1760221

12. Prasad, P. N., Introduction to Biophotonics, Wiley-Interscience, New Jersey, 2003.

13. El-Kady, I., et al., "Metallic photonic crystals at optical wavelengths," Physical Review B, Vol. 62, No. 23, 15299-15302, 2000.
doi:10.1103/PhysRevB.62.15299

14. Breukelaar, I., R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Applied Physics Letters, Vol. 88, No. 5, 051119, 2006.
doi:10.1063/1.2172727

15. Maier, S. A., "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, Vol. 81, No. 9, 2002.
doi:10.1063/1.1503870

16. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

17. Imura, K., T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," Journal of Chemical Physics, Vol. 122, No. 15, 154701, 2005.
doi:10.1063/1.1873692

18. Seidel, J., "Surface plasmon transmission across narrow grooves in thin silver films," Applied Physics Letters, Vol. 82, No. 9, 2003.
doi:10.1063/1.1558219

19. Pile, D. F. P. and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Optics Letters, Vol. 29, No. 10, 1069-1071, 2004.
doi:10.1364/OL.29.001069

20. Bozhevolnyi, S. I., et al., "Channel plasmon-polariton guiding by subwavelength metal grooves," Physical Review Letters, Vol. 95, No. 4, 46802, 2005.
doi:10.1103/PhysRevLett.95.046802

21. Sarid, D., "Long-range surface-plasma waves on very thin metal films," Physical Review Letters, Vol. 47, No. 26, 1927-1930, 1981.
doi:10.1103/PhysRevLett.47.1927

22. Kuwamura, Y., M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," Journal of the Physical Society of Japan, Vol. 52, No. 7, 2350-2355, 1983.
doi:10.1143/JPSJ.52.2350

23. Guo, J. and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Optics Express, Vol. 14, No. 25, 12409-12418, 2006.
doi:10.1364/OE.14.012409

24. Pile, D. F. P., et al., "Twodimensionally localized modes of a nanoscale gap plasmon waveguide," Applied Physics Letters, Vol. 87, No. 26, 261114, 2005.
doi:10.1063/1.2149971

25. Liu, L., Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Optics Express, Vol. 13, No. 17, 6645-6650, 2005.
doi:10.1364/OPEX.13.006645

26. Satuby, Y. and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches — measurement and analysis," Optics Express, Vol. 15, No. 7, 4247-4252, 2007.
doi:10.1364/OE.15.004247

27. Bozhevolnyi, S. I., et al., "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, No. 7083, 508-511, 2006.
doi:10.1038/nature04594

28. Collin, S., F. Pardo, and J. L. Pelouard, "Waveguiding in nanoscale metallic apertures," Optics Express, Vol. 15, No. 7, 4310-4320, 2007.
doi:10.1364/OE.15.004310

29. Saj, W., "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Optics Express, Vol. 13, No. 13, 4818-4827, 2005.
doi:10.1364/OPEX.13.004818

30. Jin, E. X. and X. Xu, "Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film," Japanese Journal of Applied Physics, Vol. 43, No. 1, 407-417, 2004.
doi:10.1143/JJAP.43.407

31. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, Wiley, Chichester, 2001.

32. Bozhevolnyi, S. I., "Effective-index modeling of channel plasmon polaritons," Optics Express, Vol. 14, No. 20, 9467-9476, 2006.
doi:10.1364/OE.14.009467

33. Wu, B. I., et al., "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," Journal of Applied Physics, Vol. 93, No. 11, 2003.
doi:10.1063/1.1570501

34. Sönnichsen, C., "Plasmons in metal nanostructures," Ph.D. thesis, 2001.

35. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectricmetal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 87, No. 13, 131102, 2005.
doi:10.1063/1.2056594

36. Bai, M. and N. Garcia, "Transmission of light by a single subwavelength cylindrical hole in metallic films," Applied Physics Letters, Vol. 89, No. 14, 2006.
doi:10.1063/1.2358210

37. Kim, K. Y., et al., "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electronics Review, Vol. 14, No. 3, 233-241, 2006.
doi:10.2478/s11772-006-0031-z


© Copyright 2014 EMW Publishing. All Rights Reserved