Vol. 77
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-08-08
Compact Artificial Magnetic Conductor Designs Using Planar Square Spiral Geometries
By
, Vol. 77, 43-54, 2007
Abstract
Compact spiral artificial magnetic conductors (AMC) have been investigatedin this paper. First, single andd ouble spirals are examinedto achieve an in-phase reflection at a lower frequency comparedto a conventional patch element of the same size. However, these two designs generate a large cross polarization. The cross polarization affects the operating frequency and bandwidth. In order to eliminate the cross polarization effect, a four-arm spiral element is introduced. This geometry does not generate a cross polarization, and an operating frequency that is 49.45% lower than the reference patch element has been achieved.
Citation
Yanghyo Kim, Fan Yang, and Atef Elsherbeni, "Compact Artificial Magnetic Conductor Designs Using Planar Square Spiral Geometries," , Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302
References

1. Yang, R., Y. Xie, P. Wang, and andL. Li, "Microstrip antennas with left-handed materials substrates," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939306777442908

2. Grzegorczyk, T. M. andJ. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical andn umerical studies to potential applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

3. Sui, Q., C. Li, L. L. Li, and andF. Li, "Experimental study of λ/4 monopole antennas in a left-handed meta-material," Progress In Electromagnetics Research, Vol. 51, 281-293, 2005.
doi:10.2528/PIER04011202

4. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

5. Yang, F., V. Demir, D. A. Elsherbeni, and andA. Z. Elsherbeni, "Enhancement of printedd ipole antennas characteristics using semi-EBG groundplane," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

6. Yang, F. andY. Rahmat-Samii, "Reflection phase characterizations of the EBG groundplane for low profile wire antenna ap plications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

7. Nakano, H., K. Hitosugi, N. Tatsuzawa, D. Togashi, H. Mimaki, and andJ. Yamauchi, "Effects on the radiation characteristics of using a corrugatedreflector with a helical antenna andan electromagnetic band-gap reflector with a spiral antenna," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 191-199, 2005.
doi:10.1109/TAP.2004.840755

8. Abedin, M. F. and M. Ali, "Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultra-thin directional dipoles," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3664-3672, 2005.
doi:10.1109/TAP.2005.858584

9. Yang, F. andY. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

10. Yang, L., M. Fan, and andZ. Feng, "A spiral Electromagnetic Bandgap (EBG) structure and its application in microstrip antenna arrays," APMC 2005Pr oceedings, Vol. 3, No. 12, 2005.

11. Yao, Y., X. Wang, and andZ. Feng, "A novel dual-bandcompact Electromagnetic Bandgap (EBG) structure and its application in multi-antennas," IEEE Antennas Propag. Society International Symposium, No. 7, 1943-1946, 2006.

12. Hosseini, M., A. Pirhadi, and M. Hakkak, "Design of a nonuniform high impedance surface for a low profile antenna," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1455-1464, 2006.
doi:10.1163/156939306779274291

13. Poilasne, G., "Antennas on high-impedance ground planes: On the importance of the antenna isolation," Progress In Electromagnetics Research, Vol. 41, 237-255, 2003.

14. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

15. McVay, J. andN. Engheta, "High impedance metamaterial surfaces using Hilbert-curve inclusions," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 130-132, 2004.
doi:10.1109/LMWC.2003.822571

16. Simovski, C. R., P. Maagt, and andI. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas and Propag., Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598

17. Hiranandani, M. A.A. B. Yakovlev, and A. A. Kishk, "Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications," IEE Proc.- Microw. Antennas Propag., Vol. 153, No. 5, 487-493, 2006.

18. Yang, F., J. Chen, Q. Rui, and andA. Elsherbeni, "A simple and efficient FDTD/PBC algorithm for periodic structure analysis," Radio Science, Vol. 42, No. 4, 2007.
doi:10.1029/2006RS003526