PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 291-304

RAMAN AMPLIFICATION AND SUPERLUMINAL PROPAGATION OF ULTRAFAST PULSES BASED ON LOOP SILICON WAVEGUIDES: THEORETICAL MODELING AND PERFORMANCE

By J.-W. Wu, F.-G. Luo, and Q.-T. Zhang

Full Article PDF (322 KB)

Abstract:
In this paper, we report, for the first time to the best of our knowledge, the detailed modeling and performance of Raman amplification and superluminal propagation of weak ultrafast femtosecond optical pulses in nonlinear loop single mode silicon-oninsulator anomalously dispersive optical waveguides. Using the device, theoretical results for 100-fs signal optical pulse show that when the launch peak power of signal pulse is fixed at −10 dBm, the gain value up to 30 dB can be achieved, and the delay time of superluminal propagation can also be adjusted by changing the system parameters, including initial chirp and peak power of pump pulse, initial delay time between pump and signal pulses, and waveguide length, etc.

Citation:
J.-W. Wu, F.-G. Luo, and Q.-T. Zhang, "Raman Amplification and Superluminal Propagation of Ultrafast Pulses Based on Loop Silicon Waveguides: Theoretical Modeling and Performance," Progress In Electromagnetics Research, Vol. 79, 291-304, 2008.
doi:10.2528/PIER07101102
http://www.jpier.org/PIER/pier.php?paper=07101102

References:
1. Yu, J., Y. Qian, P. Jeppesen, and S. N. Knudsen, "Broad-band and pulsewidth-maintained wavelength conversion based on a highnonlinearity DSF nonlinear optical loop mirror," IEEE Photon. Technol., Vol. 13, No. 4, 344-346, 2001.
doi:10.1109/68.917846

2. Shi, H., "Performance analysis on semiconductor laser amplifier loop mirrors," J. of Lightwave Technol., Vol. 20, No. 4, 682-688, 2002.
doi:10.1109/50.996589

3. Sun, H., H. Dong, and N. K. Dutta, "Mode-locked erbiumdoped fiber ring laser using intracvity polarization-maintaining loop mirror," IEEE Photon. Technol., Vol. 18, No. 12, 1311-1313, 2006.
doi:10.1109/LPT.2006.876747

4. Rong, H., A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature, Vol. 433, No. 17, 292-294, 2005.
doi:10.1038/nature03273

5. Rong, H., R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, Vol. 433, No. 20, 725-728, 2005.
doi:10.1038/nature03346

6. Liang, T. and H. Tsang, "Efficient Raman amplification in siliconon- insulator waveguide," Appl. Phys. Lett., Vol. 85, No. 16, 3343-3345, 2004.
doi:10.1063/1.1807960

7. Liu, A., H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. of Lightwave Technol., Vol. 24, No. 3, 1440-1455, 2006.
doi:10.1109/JLT.2005.863322

8. Xu, Q., V. R. Almelda, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Opt. Lett., Vol. 30, No. 1, 35-37, 2005.
doi:10.1364/OL.30.000035

9. Liu, A., H. Rong, and M. Paniccia, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express, Vol. 12, No. 8, 4261-4268, 2004.
doi:10.1364/OPEX.12.004261

10. Wu, J. W. and F. G. Luo, "Generation of high repetition rate picosecond pulse train based on ultra-small silicon waveguide," Progress In Electromagnetics Research, Vol. 75, 163-170, 2007.
doi:10.2528/PIER07060102

11. Dogariu, A., A. Kuzmich, H. Cao, and L. J. Wang, "Superluminal light pulse propagation via rephrasing in a transparent anomalously dispersive medium," Opt. Express, Vol. 8, No. 6, 344-350, 2001.
doi:10.1364/OE.8.000344

12. Lousteau, J., D. furniss, A. B. Scddon, T. M. Benson, A. Vukovic, and P. Sewell, "The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section," J. of Lightwave Technol., Vol. 22, No. 8, 1923-1929, 2006.
doi:10.1109/JLT.2004.832427

13. Leonardis, F. D. and V. M. N. Passaro, "Modeling of Raman amplification in silicon-on-insulator optical microcavities," New J. of Phys., Vol. 9, No. 25, 1-24, 2007.

14. Leonardis, F. D. and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," J. of Lightwave Technol., Vol. 25, No. 9, 2352-2366, 2007.
doi:10.1109/JLT.2007.901443

15. Shwetanshumala, S. A. Biswas, and S. Konar, "Dynamically stable super Gaussian solitons in semiconductor doped glass fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888

16. Biswas, A., S. Konar, and E. Zerrad, "Soliton-soliton interaction with parabolic law nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833

17. Biswas, A., Shwetanshumala, and S. Konar, "Dynamically stable dispersion-managed optical solitons with parabolic law nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1249-1258, 2006.
doi:10.1163/156939306777443006

18. Dimitropoulos, D., V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express, Vol. 12, No. 1, 149-160, 2003.
doi:10.1364/OPEX.12.000149

19. Passaro, V. M. N. and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," J. of Lightwave Technol., Vol. 24, No. 7, 2920-2931, 2006.
doi:10.1109/JLT.2006.875956

20. Soref, R. A. and B. R. Bennett, "Electrooptical effects in silicon," IEEE Quantum Electron., Vol. QE-23, No. 1, 123-129, 1987.
doi:10.1109/JQE.1987.1073206

21. Claps, R., V. Rahgunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express, Vol. 12, No. 12, 2774-2780, 2004.
doi:10.1364/OPEX.12.002774

22. Dimitropoulos, D., R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-oninsulator rib waveguides," Appl. Phys. Lett., Vol. 86, No. 3, 1-3, 2005.

23. Chen, X., D. Liang, and K. Huang, "Micro wave imaging 3- D buried objects using parallel gentic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

24. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

25. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.
doi:10.2528/PIER05091201

26. Luo, S. and Z. D. Chen, "An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures," Progress In Electromagnetics Research, Vol. 68, 229-246, 2007.
doi:10.2528/PIER06090506

27. Raghunathan, V., R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. of Lightwave Technol., Vol. 23, No. 6, 2094-2101, 2005.
doi:10.1109/JLT.2005.849895

28. Hsieh, I. W., X. Chen, J. I. Dadap, N. C. Panoin, R. M. Osgood, S. J. Mcnab, and Y. A. Vlasov, "Itrafast-pulse self-phase modulation and third-order dispersion in Si photonic wirewaveguides," Opt. Express, Vol. 14, No. 25, 12380-12387, 2006.
doi:10.1364/OE.14.012380

29. Yin, L. and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett., Vol. 32, No. 4, 2031-2033, 2007.
doi:10.1364/OL.32.002031


© Copyright 2014 EMW Publishing. All Rights Reserved