Vol. 79
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Study on Conformal FDTD for Electromagnetic Scattering by Targets with Thin Coating
By
Progress In Electromagnetics Research, Vol. 79, 305-319, 2008
Abstract
In order to simulate the electromagnetic scattering of targets with thin-coating accurately, a conformal finite-difference timedomain (CFDTD) method based on effective constitutive parameters is presented in this paper. Two kinds of coating problems are considered. For a coated target with medium backing material, the CFDTD formulations on conformal cells are the same as those of the conventional FDTD, but the parameters in FDTD formulations are replaced by effective constitutive parameters to include the curved coating message of target. For a coated target with perfectly conducting (PEC) backing material, the contour-path integral is used to exclude the curved PEC part, and effective constitutive parameters are then introduced to include the coating message. The bistatic radar cross section (RCS) of coated spheres with medium backing material and with PEC backing material are computed, respectively, to validate the presented CFDTD scheme. The backscattering of a composite airfoil, which is made of radar absorbing material (RAM) and metal framework, and coated by fiberglass-reinforced plastics, is also analyzed to demonstrate the feasibility of presented scheme.
Citation
Xiao-Juan Hu, and De-Biao Ge, "Study on Conformal FDTD for Electromagnetic Scattering by Targets with Thin Coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902
References

1. Huang, A.-F., X.-Q. Yu, and W.-X. Yao, "Numerical simulation of electromagnetic scattering for wing structures with low observability," Acta Aeronautica et Astronautica Sinica, Vol. 26, No. 4, 422-425, 2005.

2. Shim, J. and H.-T. Kim, "Dominance of creeping wave modes of backscattered field from a conducting sphere with dielectric coatinging," Progress In Electromagnetics Research, Vol. 21, 293-306, 1999.
doi:10.2528/PIER98082503

3. Kärkkäinen, M. K., "FDTD surface impedance model for coated conductors," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 2, 222-233, 2004.
doi:10.1109/TEMC.2004.826891

4. Sheng, X.-Q., J.-M. Jin, J.-M. Song, et al. "On the formulation of hybrid finite-element boundary-integral methods for 3D scattering," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 303-311, 1998.
doi:10.1109/8.662648

5. Hu, J., Z.-P. Nie, et al. "Computation of the RCS of 3-D coatinging conductor with arbitrary shape by using FMM and IBC," 2000 Proceedings of Antennas Propagation and EM Theory, 289-292, 2000.

6. Hu, X.-J., D.-B. Ge, and B. Wei, "Study on MCFDTD for3-D coated targets by using effective parameters," System Engineering and Electronics, Vol. 28, No. 11, 1652-1654, 2006.

7. Zheng, H.-X., X.-Q. Sheng, and E. K.-N Yung, "Computation of scattering from anisotropically coated bodies using conformal FDTD," Progress In Electromagnetics Research, Vol. 35, 287-297, 2002.
doi:10.2528/PIER02030804

8. Gong, Z.-Q. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

9. Strifors, H.-C. and G.-C. Gaunaurd, "Bistatic scattering by bare and coated perfectly conducting targets of simple shape," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1037-1050, 2006.
doi:10.1163/156939306776930295

10. Qiu, Z.-J., X.-Y. Hou, X. Li, and J.-D. Xu, "On the condition number of matrices from various hybrid vector FEM-BEM equations for 3-D scattering," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1797-1806, 2006.
doi:10.1163/156939306779292138

11. Hamid, A.-K. and F.-R. Cooray, "Radiation characteristics of a spheriodal slot antenna coated with isorefractive materials," J. of Electromagn. Waves and Appl., Vol. 21, No. 12, 1605-1619, 2007.

12. Rothwell, E.-J., "Natural-mode representation for the field reflected by an inhomogeneous conductor-backed material layer — TM case," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 569-584, 2007.
doi:10.1163/156939307780667346

13. Yee, K.-S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Taflove, A. and S.-C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, MA, USA, 2005.

15. Jurgens, T.-G., A. Taflove, K.-R. Umashankar, and T.-G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Trans. Antennas and Propagation, Vol. 40, No. 4, 357-366, 1992.
doi:10.1109/8.138836

16. Jurgens, T.-G. and A. Taflove, "Three-dimensional contour FDTD modeling of scattering from single and multiple bodies," IEEE Trans. Antennas and Propagation, Vol. 41, No. 12, 1703-1708, 1993.
doi:10.1109/8.273315

17. Dey, S. and R. Mittra, "A modified locally conformal finitedifference time-domain algorithm for modeling three-dimensional perfectly conducting targets," Microwave and Optical Technology Letters, Vol. 17, No. 6, 349-352, 1998.
doi:10.1002/(SICI)1098-2760(19980420)17:6<349::AID-MOP4>3.0.CO;2-H

18. Yu, W.-H. and R. Mittra, "A conformal FDTD software package modeling antennas and microstrip circuit components," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 28-39, 2000.
doi:10.1109/74.883505

19. Li, Q.-L.H. Dong, W. Tang, and Y.-B. Yan, "A simplified CFDTD algorithm for scattering analysis," 2003 6th International Symposium on Antennas Algorithm and Propagation and EM Theory Proceedings, 28-407, 2003.

20. Hu, X.-J., D.-B. Ge, B. Wei, et al. "Conformal FDTD meshgenerating technique for objects with triangle-patch model," High Power Laser and Particle Beams, Vol. 19, No. 8, 1333-1337.

21. Kaneda, N., B. Houshm, and T. Itoh, "FDTD analysis of dielectric resonators with curved surface," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 9, 1645-1649, 1997.
doi:10.1109/22.622937

22. Yu, W.-H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surface," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, 2001.
doi:10.1109/7260.905957