PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 225-239

COMBING MULTILEVEL GREEN'S FUNCTION INTERPOLATION METHOD WITH VOLUME LOOP BASES FOR INDUCTANCE EXTRACTION PROBLEMS

By H.-G. Wang and B. jrxhQLmCnJgUNYcWxfu

Full Article PDF (1,158 KB)

Abstract:
In this paper,a fast integral equation method is developed for extracting the inductances in RF ICs,RF MEMs,IC packages,and deep submicron ICs etc. This method combines a recently developed Multilevel Green's Function Interpolation Method (MLGFIM) [1,2] with the volume integral equation discretized using Volume Loop (VL) basis functions. In it,instead of using the filaments model to simulate the currents flowing in the inductors,w e use the conventional SWG basis functions for this kind of basis functions is flexible for problems with complex geometries. The shortest path finding algorithm is also used to find the source loop basis functions. The inductance extractions from the straight line,the spiral inductors,the bump,and the parallel buses in this paper demonstrate the validity and efficiency of this hybrid method.

Citation: (See works that cites this article)
H.-G. Wang and B. jrxhQLmCnJgUNYcWxfu, "Combing multilevel green's function interpolation method with volume loop bases for inductance extraction problems," Progress In Electromagnetics Research, Vol. 80, 225-239, 2008.
doi:10.2528/PIER07102101
http://www.jpier.org/PIER/pier.php?paper=07102101

References:
1. Wang, H. G., C. H. Chan, and L. Tsang, "A new multilevel Green's function interpolation method for large scale low frequency EM simulations," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 24, No. 9, 1427-1443, 2005.
doi:10.1109/TCAD.2005.850804

2. Wang, H. G. and C. H. Chan, "The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1348-1358, 2007.
doi:10.1109/TAP.2007.895576

3. Venkov, G., M. W. McCall, and D. Censor, "The theory of low-frequency wave physics revisited," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 229-249, 2007.
doi:10.1163/156939307779378763

4. Tang, W., X. He, T. Pan, and Y. L. Chow, "Syn thetic asymptote formulas of equivalent circuit components of square spiral inductors," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 215-226, 2006.
doi:10.1163/156939306775777206

5. Zheng, Q. and H. Zeng, "Multip ole theory analysis of 3D magnetostatic fields," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 389-397, 2006.
doi:10.1163/156939306775701768

6. Babic, S. I. and C. Akyel, "New mutual inductance calculation of the magnetically coupled coils: Thin disk coil-thin wall solenoid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1281-1290, 2006.
doi:10.1163/156939306779276794

7. Hodges, D. A., H. G. Jackson, and R. A. Saleh, Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, McGra w-Hill Education (Asia) Co. and Tsinghua University Press, 2003.

8. Ulrich, R. K. and L. W. Schaper, Integrated Passive Component Technology, IEEE Press, Piscata way, NJ, 2003.

9. Varadan, V. K., K. J. Vinoy, and K. A. Jose, RF MEMS and Their Applications, John Wiley & Sons Inc., Hob oken, NJ, 2003.

10. Kusamitsu, H., Y. Morishita, K. Maruhashi, M. Ito, and K. Ohata, "The flip-chip bump interconnection for millimeterwave GaAs MMIC," IEEE Trans. Electronics Packaging Manufacturing, Vol. 22, No. 1, 23-28, 1999.
doi:10.1109/6104.755086

11. Wang, H. G., C. H. Chan, L. Tsang, and V. Jandhyala, "On sampling algorithms in multilevel QR factorization method for magnetoquasitatic analysis of integrated circuits over multilayered lossy substrates," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 25, No. 9, 1777-1792, 2006.
doi:10.1109/TCAD.2005.859534

12. Kamon, M., M. J. Tsuk, and J. K. White, "F ASTHENRY: A multipole accelerated 3-D inductance extraction program," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1750-1758, 1994.
doi:10.1109/22.310584

13. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

14. Rubin, B. J., "Div ergence-free basis for representing polarization current in finite-size dielectric regions," IEEE Trans. Antennas Propagat., Vol. 41, No. 3, 269-277, 1993.
doi:10.1109/8.233137

15. Zhao, J. S. and W. C. Chew, "In tegral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1635-1645, 2000.
doi:10.1109/8.899680

16. Chen, S., W. C. Chew, J. M. Song, and J. S. Zhao, "Analysis of low frequency scattering from penetrable scatterers," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, No. 4, 726-735, 2001.
doi:10.1109/36.917883

17. Lee, J. F., R. Lee, and R. J. Burkholder, "Lo op star basis functions and a robust pre-conditioner for EFIE scattering problems," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1855-1863, 2003.
doi:10.1109/TAP.2003.814736

18. Li, M.-K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.
doi:10.2528/PIER05061303

19. Rokhlin, V., "Rapid solution of integral equation of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6

20. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Microw. Opt. Tech. Lett., Vol. 7, No. 7, 466-470, 1994.
doi:10.1002/mop.4650071013

21. Song, J. M., C. C. Lu, and W. C. Chew, and S. W. Lee, "Fast illinois solver code (FISC)," IEEE Antennas Propag. Mag., Vol. 48, No. 6, 27-34, 1998.
doi:10.1109/74.706067

22. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

23. Zhao, L., T. J. Cui, and W.-D. Li, "An efficient algorithm for EM scattering by electrically large dielectric objects using Mr-Qeb iterative scheme and CG-FFT method," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902

24. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 16, No. 10, 1059-1072, 1997.
doi:10.1109/43.662670

25. Chan, C. H., C.-M. Lin, L. Tsang, and Y. F. Leung, "A sparse matrix/canonical grid method for analyzing microstrip structures," IEICE Trans. Electron., Vol. E80-C, No. 11, 1354-1359, 1997.

26. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
doi:10.1029/96RS02504

27. Kapur, S. and D. E. Long, "IES 3: Efficient electrostatic and electromagnetic simulation," IEEE Computational Science and Engineering, Vol. 5, No. 12, 60-67, 1998.
doi:10.1109/99.735896

28. Wang, H. G., C. H. Chan, L. Tsang, and K. F. Chan, "Mixture effective permittivity simulations using IMLMQRF method on preconditioned EFIE," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603

29. Gilberg, R. F. and B. A. Forouzan, Data Structures: A Pseudocode Approach with C++, Thomson Asia Pte Ltd and PPTPH, 2002.


© Copyright 2014 EMW Publishing. All Rights Reserved