PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 367-386

A NONDESTRUCTIVE TECHNIQUE FOR DETERMINING COMPLEX PERMITTIVITY AND PERMEABILITY OF MAGNETIC SHEET MATERIALS USING TWO FLANGED RECTANGULAR WAVEGUIDES

By M. W. Hyde IV and M. J. Havrilla

Full Article PDF (576 KB)

Abstract:
In this paper,a nondestructive technique for determining the complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides is presented. The technique extends existing single probe methods by its ability to simultaneously measure reflection and transmission coefficients imperative for extracting both permittivity and permeability over all frequencies. Using Love's Equivalence Principle,a system of coupled magnetic field integral equations (MFIEs) is formed. Evaluation of one of the two resulting spectral domain integrals via complex plane integration is discussed. The system,solv ed via the Method of Moments (MoM),yields theoretical values for the reflection and transmission coefficients. These values are compared to measured values and the error minimized using nonlinear least squares to find the complex permittivity and permeability of a material. Measurement results for two magnetic materials are presented and compared to traditional methods for the purpose of validating the new technique. The technique's sensitivity to uncertainties in material thickness and waveguide alignment is also examined.

Citation:
M. W. Hyde IV and M. J. Havrilla, "A Nondestructive Technique for Determining Complex Permittivity and Permeability of Magnetic Sheet Materials Using Two Flanged Rectangular Waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405
http://www.jpier.org/PIER/pier.php?paper=07102405

References:
1. Li, C. and K. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe — Full wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, 1995.
doi:10.1109/19.368108

2. Chang, C., K. Chen, and J. Qian, "Nondestructiv e determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717

3. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics Measurement and Materials Characterization, John Wiley & Sons, New York, 2004.

4. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2037-2052, 2006.
doi:10.1163/156939306779322693

5. Olmi, R., R. Nesti, G. Pelosi, and C. Riminesi, "Impro vement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 217-232, 2004.
doi:10.1163/156939304323062103

6. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimo de solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: the forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1131-1140, 1999.
doi:10.1109/19.816127

7. Mautz, J. R. and R. F. Harrington, "T ransmission from a rectangular waveguide into half-space through a rectangular aperture," IEEE Trans. Microwave TheoryT ech., Vol. MTT-26, No. 1, 44-45, 1978.
doi:10.1109/TMTT.1978.1129307

8. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Trans. Microwave Theory Tech., Vol. MTT-33, No. 5, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006

9. Encinar, J. A. and J. M. Rebollar, "Con vergence of numerical solutions of open-ended waveguide by modal analysis and hybrid modal-spectral techniques," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, No. 7, 809-814, 1986.
doi:10.1109/TMTT.1986.1133445

10. Popovic, D., et al., "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microwave TheoryT ech., Vol. 53, No. 5, 1713-1722, 2005.
doi:10.1109/TMTT.2005.847111

11. Bao, J., S. Lu, and W. D. Hurt, "Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies," IEEE Trans. Microwave TheoryT ech., Vol. 45, No. 10, 1730-1741, 1997.
doi:10.1109/22.641720

12. Mazlumi, F., S. Sadeghi, and R. Moini, "In teraction of rectangular open-ended waveguides with surface tilted long cracks in metals," IEEE Trans. Instrum. Meas., Vol. 55, No. 6, 2191-2197, 2006.
doi:10.1109/TIM.2006.884282

13. Huber, C., H. Abiri, S. I. Ganchev, and R. Zoughi, "Mo deling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide," IEEE Trans. Microwave TheoryT ech., Vol. 45, No. 11, 2049-2057, 1997.
doi:10.1109/22.644234

14. Yeh, C. and R. Zoughi, "A novel microwave method for detection of long surface cracks in metals," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 719-725, 1994.
doi:10.1109/19.328896

15. Baker-Jarvis, J., M. D. Janezic, P . D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
doi:10.1109/19.328897

16. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2145-2147, 1998.
doi:10.1109/22.739296

17. Maode, N., S. Yong, Y. Jinkui, F. Chenpeng, and X. Deming, "An improved open-ended waveguide measurement technique on parameters εr and μr of high-loss materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 476-481, 1999.
doi:10.1109/19.744194

18. Chen, C., Z. Ma, T. Anada, and J. Hsu, Further study on twothickness- method for simultaneous measurement of complex EM parametersbas ed on open-ended coaxial probe, 2005 European Microwave Conference, 4-6, 2005.

19. Tantot, O., M. Chatard-Moulin, and P. Guillon, "Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method," IEEE Trans. Instrum. Meas., Vol. 46, No. 2, 519-522, 1997.
doi:10.1109/19.571900

20. Hyde, M. W. and M. J. Havrilla, Measurement of complex permittivity and permeability using two flanged rectangular waveguides, 2007 International Microwave Symposium, 3-8, 2007.

21. Collin, R. E., FieldThe ory of GuidedWaves, 2nd edition, IEEE Press, New York, 1991.

22. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

23. Weir, W. B., Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.

24. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic propertiesof materialsb y time-domain techniques," IEEE Trans. Instrum. Meas., Vol. IM-19, No. 4, 377-382, 1970.

25. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction, Springer-Verlag, New York, 2001.

26. Hanson, G. W., A. I. Nosich, and E. M. Kartchevski, "Green's function expansions in dyadic root functions for shielded layered waveguides," Progress In Electromagnetics Research, Vol. 39, 61-91, 2003.
doi:10.2528/PIER02082205

27. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, New York, 2001.

28. Agilent 8510C Network Analyzer Data Sheet, Agilent Technologies, Agilent Technologies, 2000., 2000.


© Copyright 2014 EMW Publishing. All Rights Reserved