PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 107-122

ANALYSIS AND DESIGN OF HIGHLY COMPACT BANDPASS WAVEGUIDE FILTER USING COMPLEMENTARY SPLIT RING RESONATORS(CSRR)

By H. Bahrami, M. Hakkak, and A. Pirhadi

Full Article PDF (992 KB)

Abstract:
Split Ring Resonators (SRR) and Complementary Split Ring Resonators (CSRR) are widely used to design metamaterial structures. These structures when excited by suitable electromagnetic fields have resonance behavior and show unusual properties such as negative permeability and permittivity near the resonance frequency region. In this paper, CSRRs are used to design a bandpass waveguide filter in the X-band. The circuit model of these elements in the waveguide is similar to parallel L and C components that are placed in parallel form in a transmission line. Resonance frequency and bandwidth of LC resonance circuit are adjusted by proper choice of the CSRR geometrical dimensions. Then, to design the miniaturized filter these structures are combined with proper admittance inverter. The admittance inverter is designed such that its electric length is very smaller than the conventional λ/4 transmission line. As a result, a filter is compacted about 66% in comparison to the λ/4 transmission line as admittance inverter. Simulation results by Ansoft HFSS (Based on the Finite Element Method) confirm the results of filter circuit model.

Citation: (See works that cites this article)
H. Bahrami, M. Hakkak, and A. Pirhadi, " analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators ( CSRR )," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
doi:10.2528/PIER07111203
http://www.jpier.org/PIER/pier.php?paper=07111203

References:
1. Li, D., Y. J. Xie, P. Wang, and R. Yang, "Applications of splitring resonances on multi-band frequency selective surfaces," J. of Electromagn. Waves and Appl., Vol. 21, No. 11, 1551-1563, 2007.

2. Gurel, L., O. Ergul, and A. Unal, Accurate analysis of metamaterials involving finite arrays of split-ring resonators and thin wires, Progress In Electromagnetics Research Symposium, Vol. S 2007, 26-30, 2007.

3. Zhao, Q., L. Kang, B. Du, B. Li, and J. Zhou, Tunable metamaterials based on nematic liquid crystals, Progress In Electromagnetics Research Symposium, Vol. S 2007, 26-30, 2007.

4. Jelinek, L., J. Machac, and J. Zehentner, "A magnetic metamaterial composed of randomly oriented SRRs," PIERS Online, Vol. 2, No. 6, 624-627, 2006.
doi:10.2529/PIERS060831080303

5. Chang, K. and L. Hsieh, Microwave Ring Circuits and Related Structures, John Wiley & Sons, Inc, 2004.

6. Xu, W., L.-W. Li, H.-Y. Yao, T.-S. Yeo, and Q. Wu, "Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory," J. of Electromagn. Waves and Appl., Vol. 20, No. 1, 13-25, 2006.
doi:10.1163/156939306775777413

7. Wu, Q., M.-F. Wu, F.-Y. Meng, J. Wu, and L.-W. Li, SRRs' srtificial magnetic metamaterials modeling using transmission line theory, Progress In Electromagnetics Research Symposium, Vol. S 2005, 22-26, 2005.

8. Garcia-Garcia, J., F. Aznar, M. Gil, J. Bonache, and F. Martin, Size reduction of SRRs for metamaterial and left handed media design, Progress In Electromagnetics Research Symposium, Vol. S 2007, 26-30, 2007.

9. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions Antennas and Propagation, Vol. 51, No. 7, 2003.

10. Cabuz, A. I., D. Felbacq, and D. Cassagne, "Homogenization of negative-index composite metamaterials: A two-step approach," Physical Review Letters, Vol. 98, 1-4, 2007.

11. Hrabar, S. and G. Jankovic, "Basic radiation properties of waveguides filled with uniaxial single-negative metamaterials," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2006.
doi:10.1002/mop.21993

12. Mosallaei, H. and K. Sarabandi, "A compact wide-band EBG structure utilizing embedded resonant circuits," IEEE Antennas and Wireless Propagagation Letters, Vol. 4, 2005.

13. Falcone, F., F. Martin, J. Bonache, R. Marques, and M. Sorolla, "Coplanar waveguide structures loaded with split ring resonators," Microwave and Optical Technology Letters, Vol. 40, 3-6, 2004.
doi:10.1002/mop.11269

14. Bonache, J., F. Martín, F. Falcone, J. D. Baena, T. Lopetegi, J. Garcia-Garcia, M. A. G. Laso, I. Gil, A. Marcotegui, R. Marque, and M. Sorolla, "Application of complementary split-ring resonators to the design of compact narrow bandpass structure in microstrip technology," Microwave and Optical Technology Letters, Vol. 46, No. 5, 2005.
doi:10.1002/mop.21031

15. Bonache, J., F. Martín, F. Falcone, I. Gil, J. Garcia-Garcia, R. Marques, and M. Sorolla, "Microstrip bandpass filters with wide bandwidth and compact dimensions," Microwave and Optical Technology Letters, Vol. 46, No. 4, 2005.
doi:10.1002/mop.20982

16. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

17. Zhang, X.-C., Z.-Y. Yu, and J. Xu, "Novel band-pass Substrate Integrated Waveguide (SIW) filter based on Complementary Split Ring Resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

18. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by Composite Right/Left Handed (CRLH) transmission lines based on Complementary Split Rings Resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253.
doi:10.2529/PIERS060802072849

19. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection lowpass filter with controllable transmission zero using Complementary Split Ring Resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

20. Liu, K. Y., C. Li, and F. Li, "A new type of microstrip coupler with Complementary Split-Ring Resonator (CSRR)," PIERS Online, Vol. 3, No. 5, 603-606, 2007.
doi:10.2529/PIERS060906085815

21. Baena, J. D., J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions Microwave Theory and Techniques, Vol. 53, No. 4, 2005.

22. Shelkovnikov, A. and D. Budimir, "Left-handed rectangular waveguide bandstop filters," Microwave and Optical Technology Letters, Vol. 48, No. 5, 2006.
doi:10.1002/mop.21494

23. Jitha, B., C. S. Nimisha, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "SRR loaded waveguide band rejection filter with adjustable bandwidth," Microwave and Optical Technology Letters, Vol. 48, No. 7, 2006.
doi:10.1002/mop.21641

24. Ortiz, N., J. D. Baena, M. Beruete, F. Falcone, M. A. G. Laso, T. Lopetegi, R. Marque, F. Martin, J. Garcia-Garcia, and M. Sorolla, "Complementary split-ring resonator for compact waveguide filter design," Microwave and Optical Technology Letters, Vol. 46, No. 1, 2005.
doi:10.1002/mop.20909

25. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M.Beruete, R. Marques, F. Martín, and M. Sorolla, "Babinet principle appliedto metasurface and metamaterial design," Physical Review Letters, Vol. 93, 1-4, 2004.
doi:10.1103/PhysRevLett.93.197401

26. Marcuvitz, N., Waveguide Handbook, Vol. 10, MIT Radiation Laboratory Series, Vol. 10, McGraw-Hill, New York, 1951.

27. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks and Coupling Structures, Artech House, Dedham, MA, 1980.

28. HFSS Release 9.0, Ansoft Corp., 2003., 2003.


© Copyright 2014 EMW Publishing. All Rights Reserved