Vol. 80
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-12-22
Photonic Crystals as Infrared Broadband Reflectors with Different Angles of Incidence: a Comparative Study
By
Progress In Electromagnetics Research, Vol. 80, 431-445, 2008
Abstract
In this communication, we theoretically report the reflection properties of a photonic crystal with alternate layers of air and GaAs for specified values of the lattice parameters. By employing the transfer matrix approach, the reflection spectra of the layered media are obtained for chosen sets of number of unit cells and incident angles. It is observed that the photonic crystals with different number of unit cells completely reflect a wide band in the infrared region of radiation. Also, we find that the reflectivity decreases and the completely reflected bands are shifted towards lower wavelength side with increase in the incident angle. Further, the reflected broadbands in the reflection spectra correspond to the forbidden ranges of wavelength obtained by using the analogy of Kronig-Penney model. It indicates that the completely reflected ranges are forbidden bandgaps, which is considered as an important feature of the proposed photonic crystals.
Citation
Narendra Kumar, and Sant Ojha, "Photonic Crystals as Infrared Broadband Reflectors with Different Angles of Incidence: a Comparative Study," Progress In Electromagnetics Research, Vol. 80, 431-445, 2008.
doi:10.2528/PIER07120502
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light, Princeton University Press, NJ, 1995.

2. Dowling, J. P. and C. M. Bowden, "Anomalous index of refraction in photonic band gap materials," J. Mod. Optics, Vol. 41, 345-351, 1994.
doi:10.1080/09500349414550371

3. Kosaka, H., T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, "Photonic crystal spot-size convertor," Appl. Phys. Lett., Vol. 76, 268-270, 2000.
doi:10.1063/1.125743

4. Joannopoulus, J. D. and E. F. Schubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phy. Rev. Lett., Vol. 78, 1997.

5. Meade, R. D., K. D. Bromer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical application of photonic band gap materials: Low loss bends and high Q cavities," J. Appl. Phys., Vol. 75, 4753-4755, 1994.
doi:10.1063/1.355934

6. Papalakis, E., N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Am. Phys. Soc., 34-36, 1999.

7. Pendry, J., "New electromagnetic materials emphases the negative," Physics World, 1-5, 2001.

8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

9. Knight, J. C., J. Arriage, T. A. Birks, A. O. Blanch, W. J. Wadsworth, and P. S. J. Ruseel, "Anomalous dispersion in photonic crystal fiber," IEEE, Vol. 12, 807-809, 2000.

10. Jia, V. and K. Yasumoto, "Modal analysis of two dimensional photonic crystal waveguide formed by rectangular cylinders using an improved Fourier series method," IEEE, Vol. 54, 564-567, 2006.

11. Srivastava, S. K., S. P. Ojha, and K. S. Ramesh, "Design of an ultraviolet filter based on photonic bandgap materials," Microwave Opt. Technol. Lett., Vol. 33, 308-314, 2002.
doi:10.1002/mop.10304

12. Ojha, S. P., S. K. Srivastava, N. Kumar, and S. K. Srivastava, "Design of an optical filter using photonic band gap material," Optik, Vol. 114, 101-105, 2003.

13. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

14. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional bandgaps in metallo dielectric photonic crystals," Phy. Rev. B, Vol. 54, 11245, 1996.
doi:10.1103/PhysRevB.54.11245

15. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.

16. Yeh, P., A. Yariv, and C.-S. Hong, "Electromagnetic wave propagation in periodic stratified media, I. General theory," Opt. Soc. Am., Vol. 67, 423-437, 1977.

17. Lidoriks, E. and C. M. Soukoulis, "Pulse-driven switching in onedimensional nonlinear photonic bandgap materials: A numerical study," Phys. Rev. E, 5825-5829, 2000.
doi:10.1103/PhysRevE.61.5825

18. Kumar, N., "Novel aspects of modal propagation characteristics of some optical waveguides with new geometrical structures and refractive index profiles," Ph.D. Thesis, 2002.

19. Kumar, N., S. K. Srivastava, and S. P. Ojha, "A theoretical analysis of the propagation characteristics of an annular circular waveguide with helical winding as the inner cladding," Microwave and Opt. Technol. Lett., Vol. 69, 69-74, 2003.
doi:10.1002/mop.10828

20. Birks, T., T. Knight, and J. Russel, "Endlessly single mode photonic crystal fiber," Opt. Lett., Vol. 22, 961-963, 1997.

21. Noda, S., "Teaching light new tricks," Spie OE Magazine, 28-31, 2001.

22. Ren, H., C. Jiang, W. Hu, M. Gao, and J.Wang, "Photonic crystal channel drop filter with a wavelength selective microcavity," Optics Express, Vol. 14, 2446-2458, 2006.
doi:10.1364/OE.14.002446

23. Satao, S.-L., J. Wu, and Y.-L. Her, "Triangular finite element analysis of a trapezoid polymer optical waveguide," Microwave and Optical Technol. Lett., Vol. 15, 87-89, 1997.
doi:10.1002/(SICI)1098-2760(19970605)15:2<87::AID-MOP7>3.0.CO;2-G

24. Temelkuran, B., B. Mehmet, E. Ozbay, J. P. Kavanaugh, M. M. Sigalas, and G. Tuttle, "Quasi metallic silicon micromachined photonic crystals," Appl. Phys. Lett., Vol. 78, 264-266, 2001.
doi:10.1063/1.1339256

25. Shawn, L. Y., J. G. Flemming, R. Robin, M. M. Sigalas, R. Biswas, and K. M. Ho, "Complete three-dimensional photonic bandgap in single cubic structure," J. Opt. Soc. Am. B, Vol. 18, 32-35, 2001.
doi:10.1364/JOSAB.18.000032

26. Massaoudi, S., A. De lustrac, and I. Huynen, "Properties of metallic photonic bandgap material with defect at microwave frequencies: Calculation and experimental verification," J. Electromagnetic Waves and Applications, Vol. 20, 1967-1980, 2006.
doi:10.1163/156939306779322710

27. Villa-Villa, F., J. Gaspar-Armenta, and A. Mendoza-Suar, "Surface modes in one dimensional photonic crystals that include left handed materials," J Electromagnetic Waves and Applications, Vol. 21, 485-499, 2007.
doi:10.1163/156939307779367323

28. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501