PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 381-392

NUMERICAL MODELING OF ACTIVE DEVICES CHARACTERIZED BY MEASURED S-PARAMETERS IN FDTD

By D. Y. Su, D.-M. Fu, and Z.-H. Chen

Full Article PDF (308 KB)

Abstract:
A new FDTD modeling approach for active devices characterized by measured S-parameters is presented. This approach applies vector fitting technique and piecewise linear recursive convolution (PLRC) technique to complete modeling process, and does not need to know the equivalent circuits of active devices. It preserves the explicit nature of the traditional FDTD method, and a general updated formula is derived. Furthermore, the main data-processing procedure is directly handled over the frequency band of interest, which avoids the time-domain non-causal error in traditional techniques.

Citation:
D. Y. Su, D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured s-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902
http://www.jpier.org/PIER/pier.php?paper=07120902

References:
1. Taflove, A., Computational Electrodynamics-The Finite- Difference Time-Domain Method, 2nd edition, Artech House, MA, 2000.

2. Sui, W., D. A. Chirstensen, and C. H. Durney, "Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 4, 724-730, 1992.
doi:10.1109/22.127522

3. Piket-May, M., A. Taflove, and J. Baron, "FDTD modeling of digital signal propagation in 3-D circuits with passive and active lumped loads," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 8, 1514-1523, 1994.
doi:10.1109/22.297814

4. Kuo, C. N., R. B. Wu, B. Houshmand, and T. Itoh, "Modeling of microwave active devices using the voltage-source approach," IEEE Microwave Guided Wave Lett., Vol. 6, No. 5, 199-201, 1996.
doi:10.1109/75.491504

5. Chu, Q. X., X. J. Hu, and K. T. Chan, "Models of small microwave devices in FDTD simulation," IEICE Trans. Electron., Vol. E86- C, No. 2, 120-125, 2003.

6. Reddy, V. S. and R. Garg, "An improved extended FDTD formulation for active microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1603-1608, 1999.
doi:10.1109/22.788599

7. Zhang, J. Z. and Y. Y. Wang, FDTD analysis of active circuits based on the S-parameters, Asia Pacific Microwave Conference, 1049-1053, 1997.

8. Ye, X. N. and J. L. Drewniak, "Incorporating two-port networks with S-parameters into FDTD," IEEE Microwave Wireless Comp. Lett., Vol. 11, No. 2, 77-79, 2001.
doi:10.1109/7260.914308

9. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE Trans. Power Delivery, Vol. 14, No. 3, 1052-1061, 1999.
doi:10.1109/61.772353

10. Kelley, D. F. and R. J. Luebbers, "Piecewise linear convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

11. Lee, J. Y., J. H. Lee, and H. K. Jung, "Linear lumped loads in the FDTD method using piecewise linear recursive convolution method," IEEE Microwave Wireless Compon. Lett., Vol. 16, No. 4, 158-160, 2006.
doi:10.1109/LMWC.2006.872148

12. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1761-1774, 2004.
doi:10.1163/1569393042954901

13. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1471-1484, 2006.

14. Hu, X.-J. and D.-B. Ge, "Time domain analysis of active transmission line using FDTD technique," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

15. Xiao, S., B.-Z. Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
doi:10.2528/PIER07073003

16. Kung, F. and H.-T. Chuah, "A Finite-Difference Time-Domain (FDTD) software for simulation of Printed Circuit Board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

17. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701

18. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

19. Chen, Z.-H. and Q. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002

20. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

21. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE Trans. Power Delivery, Vol. 14, No. 3, 1052-1061, 1999.
doi:10.1109/61.772353


© Copyright 2014 EMW Publishing. All Rights Reserved