Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 447-460


By X. Nie, D.-Y. Zhu, and Z.-D. Zhu

Full Article PDF (345 KB)

The problem of wide bandwidth management in ultra-high resolution SAR systems can be solved by adopting stepped chirps and applying synthetic bandwidth approach. However, high resolution SAR image formation is a non-separable 2-D impulse compression processing, so the synthetic bandwidth procedure should be modified correspondingly with the image formation algorithm adopted. This paper demonstrates the application of synthetic bandwidth approach in SAR Polar Format Algorithm (PFA) using the deramp technique. The problem of motion compensation between the sub-pulses within a burst is discussed, and the signalpro cessing flows are investigated in detail. The presented approach is validated by point target simulation.

X. Nie, D.-Y. Zhu, and Z.-D. Zhu, "Application of Synthetic Bandwidth Approach in SAR Polar Format Algorithm Using the Deramp Technique," Progress In Electromagnetics Research, Vol. 80, 447-460, 2008.

1. Skolnik, M. I., Radar Handbook, McGraw-Hill, New York, 1970.

2. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.

3. Chan, Y. K. and S. Y. Lim, "Synthetic Aperture Radar (SAR) signalgeneration," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.

4. Xue, W. and X.-W. Sun, "Target detection of vehicle volume detecting radar based on wigner-hough transform," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1513-1523, 2007.

5. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 655-669, 2005.

6. Jung, J. H., H. T. Kim, and K. T. Kim, "Comparisons of four feature extraction approaches based on Fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 251-265, 2007.

7. Seo, D.-K., K. T. Kim, I. S. Choi, and H. T. Kim, "Wideangle radar target recognition with subclass concept," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.

8. Wang, C. J., B. Y. Wen, Z. G. Ma, W. D. Yan, and X. J. Huang, "Measurement of river surface currents with UHF FMCW radar systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 375-386, 2007.

9. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.

10. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, Accurate and efficient modeling of monostatic GPR signalof dielectric targets buried in stratified media, Progress In Electromagnetics Research Symposium, 22-26, 2005.

11. Storvold, R., E. Malnes, Y. Larsen, K. A. Hogda, S.-E. Hamran, K. Mueller, and K. Langley, "SAR remote sensing of snow parameters in norwegian areas — Current status and future perspective," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1751-1759, 2006.

12. Kong, J. A., S. H. Yueh, H. H. Lim, R. T. Shin, and J. J. van Zyl, "Classification of earth terrain using polarimetric synthetic aperture radar images," Progress In Electromagnetics Research, Vol. 03, 327-370, 1990.

13. Ender, J. H. G. and A. R. Brenner, PAMIR-a wideband phased array SAR/MTI system, Radar, Vol. 150, No. 3, 165-172, 2003.

14. Brenner, A. R. and J. H. G. Ender, "First experimentalresul ts achieved with the new very wideband SAR system PAMIR," Processing of EUSAR, 81-86, 2002.

15. Cantalloube, H. and P. Dubois-Fernandez, Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results, Radar, Vol. 153, 163-176, 2006.

16. Brenner, A. R. and J. H. G. Ender, "Airborne SAR imaging with subdecimeter resolution," Processing of EUSAR, 267-270, 2004.

17. Brenner, A. R. and J. H. G. Ender, Very wideband radar imaging with the airborne SAR sensor PAMIR, IGARSS '03 Proceedings. 2003 IEEE International, Vol. 1, 533-535, 2003.

18. Brenner, A. R. and J. H. G. Ender, Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR, Radar, Vol. 153, No. 2, 152-162, 2006.

19. Gopikrishna, M., D. D. Krishna, A. R. Chandran, and C. K. Aanandan, "Square monopole antenna for ultra wide band communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1525-1537, 2007.

20. Scheiber, R., F. Barbosa, A. Nottensteiner, and R. Horn, "E-SAR upgrade to stepped-frequency mode: System description and data processing approach," Processing of EUSAR, No. 5, 2006.

21. Doerry, A. W., SAR Processing with Stepped Chirps and Phased ArrayA ntennas, Sandia NationalLab oratories, 2006.

22. Lord, R. T. and M. R. Inggs, "High resolution SAR processing using stepped-frequencies," IEEE IGARSS '97, 490-492, 1997.

23. Wilkinson, A. J., R. T. Lord, and M. R.Inggs, "Stepped-frequency processing reconstruction of target reflectivity spectrum," Communications and Signal Processing, No. 9, 101-104, 1998.

24. Wahlen, A., H. Essen, and T. Brehm, High resolution millimeterwave SAR, European Radar Conference, 217-220, 2004.

25. Schimpf, H., A. Wahlen, and H. Essen, "High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps," Electronics Letters, Vol. 39, No. 18, 1346-1348, 2003.

26. Bai, X., S.-Y. Mao, and Y.-N. Yuan, "Time domain synthetic bandwidth methods: A 0.1m resolution SAR technique," Acta Electronica Sinica, Vol. 343, No. 3, 472-477, 2006.

27. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Norwood, MA, 1995.

© Copyright 2014 EMW Publishing. All Rights Reserved