PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 81 > pp. 149-166

STENCIL COEFFICIENT COMPUTATIONS FOR THE MULTIRESOLUTION TIME DOMAIN METHOD - A FILTERBANK APPROACH

By S. M. Vaitheeswaran and S. V. Narasimhan

Full Article PDF (368 KB)

Abstract:
Multiresolution Time Domain (MRTD) techniques based on wavelet expansions can be used for adaptive refinement of computations to economize the resources in regions of space and time where the fields or circuit parameters or their derivatives are large. Hitherto, standard wavelets filter coefficients have been used with the MRTD method but the design of such filter itself may enable to incorporate desired properties for different applications. Towards this, in this paper, a new set of stencil coefficients in terms of scaling coefficients starting from a half band filter, designed by window method and deriving a physically realizable filter by spectral factorization using cepstral technique, for the MRTD method is presented. These stencil coefficients for the MRTD are found to give good agreement with similar MRTD schemes such as those obtained using Daubechies orthogonal wavelets.

Citation:
S. M. Vaitheeswaran and S. V. Narasimhan, "Stencil Coefficient Computations for the Multiresolution Time Domain Method - a Filterbank Approach," Progress In Electromagnetics Research, Vol. 81, 149-166, 2008.
doi:10.2528/PIER07121801
http://www.jpier.org/PIER/pier.php?paper=07121801

References:
1. Ali, M. and S. Sanyal, "FDTD analysis of rectangular waveguide in receiving mode as EMI sensors," Progress In Electromagnetics Research B, Vol. 2, 291-303, 2008.
doi:10.2528/PIERB07112901

2. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801

3. Alimenti, F., P. Mezzanotte, I. Roselli, and R. Sorrentino, "Modal absorption in the FDTD method: A critical review," International Journal of Numerical Modeling: Electronic Networks, Vol. 10, No. 4, 245-264, 1997.
doi:10.1002/(SICI)1099-1204(199707)10:4<245::AID-JNM278>3.0.CO;2-P

4. Beylkin, G., "On the representation of operators in basis of compactly supported wavelets," SIAM Journal on Numerical Analysis, Vol. 29, No. 12, 1716-1740, 1992.
doi:10.1137/0729097

5. Chen, X., D. Liang, and K. Huang, "Microwave imaging of 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

6. Cheong, Y., Y. M. Lee, K. H. Ra, J. G Kang, and C. C Shin, "Wavelet Galerkin scheme of time dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, 1999.
doi:10.1109/75.779907

7. Choi, S. H., D. W. Seo, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1689-1702, 2007.

8. Dogaru, T. and L. Carin, "Multiresolution time domain using CDF biorthogonal wavelets," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 5, 902-912, 2001.
doi:10.1109/22.920147

9. Tentzeris, E. M., A. Cangellaris, L. P. B. Katehi, and J. Harvey, "Multiresolution time domain (MRTD) adaptive schemes using arbitrary resolution of wavelets," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 2, 501-513, 2002.
doi:10.1109/22.982230

10. Fayedeh, H., C. Ghobadi, and J. Nourinia, "An improvement for FDTD analysis of thin-slot problems," Progress In Electromagnetics Research B, Vol. 2, 15-25, 2008.
doi:10.2528/PIERB07102907

11. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

12. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 FDTD algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601

13. Jameson, L., "On the daubechies based wavelet differentiation matrix," TechnicalReport93-95, 93-95, 1993.

14. Krumphotz, M. and L. P. B. Katehi, "MRTD: New time domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023

15. Kung, F. and H.-T. Chuah, "Finite-Difference Time-Domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

17. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, 655-669, 2005.
doi:10.1163/1569393053305062

18. Mouysset, V., P. A. Mazet, and P. Borderies, "A new approach to evaluate accurately and efficiently electromagnetic fields outside a bounded zone with time-domain volumic methods," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 803-817, 2006.
doi:10.1163/156939306776143398

19. Fujii, M. and W. J. R. Hoefer, "Interpolating wavelet Galerkin model of time dependent inhomogeneous electrically large optical waveguide problems," IEEE MTT-S Digest, 1045-1048, 2001.

20. Narasimhan, S. V. and S. Veena, Signal Processing — Principles and Implementation, Narosa Publishers, New Delhi, India, 2005.

21. Kovvali, N., W. Lin, and L. Carin, "Accurate computation of stencil coefficients for multiresolution time domain," available at www.duke.edu/ narayan/.

22. Oppenheim, A. V. and R. W Shafer, Discrete-Time Signal Processing, Prentice Hall, 1989.

23. Pala, W. P., A. Taflove, M. J. Piket, and R. M. Joseph, "Parallel finite difference time domain calculations," IEEE Trans. Antennas & Propagation, Vol. 30, 83-85, 1991.

24. Paul, C. R., "Incorporation of terminal constraints in the FDTD analysis of transmission lines," IEEE Trans. Electromagnetic Compat., Vol. 36, No. 5, 85-93, 1994.
doi:10.1109/15.293284

25. Petropoulos, P. G., "Phase error control for FDTD methods of second and fourth order accuracy," IEEE Trans. Antennas & Propagation, Vol. 42, 859-862, 1994.
doi:10.1109/8.301709

26. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101

27. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, Part II: The horizontal grounding electrode," Progress In Electromagnetics Research, Vol. 64, 167-189, 2006.
doi:10.2528/PIER06062102

28. Roberts, T. M., "Measured electromagnetic pulses verify asymptotic and analysis for linear, dispersive media," Journal of Electromagnetic Waves and Applications, Vol. 20, 1845-1851, 2006.
doi:10.1163/156939306779292200

29. Shalger, K. L., J. G. Maoloney, S. L. Ray, and A. F. Peterson, "Relative accuracy of several Finite Difference Time Domain methods in two and three dimensions," IEEE Trans. Antennas & Propagation, Vol. 41, 1732-1737, 1993.
doi:10.1109/8.273296

30. Shao, W., B.-Z. Wang, and X.-F. Liu, "Complex variable technique in compact 2-D order-marching time-domain method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1453-1460, 2007.

31. Taflove, A., "Review of the formulation of the FDTD method of numerical model of electromagnetic wave interaction with arbitrary structures," Wave Motion, Vol. 10, 547-582, 1988.
doi:10.1016/0165-2125(88)90012-1

32. Tang, M., J. F. Mao, and X. C. Li, "A novel timedomain integration method for transient analysis of non-uniform transmission lines," PIERS Online, Vol. 3, No. 1, 2007.

33. Dogaru, T. and L. Carin, "Scattering analysis by the multiresolution time domain method using compactly supported wavelet systems," IEEE Trans. Antennas Propagat., Vol. 50, No. 7, 2002.

34. Tentzeris, E., R. Robertson, A. Cangellaris, and L. P. B. Katehi, "Space and time adapting gridding using MRTD," IEEE MTT-S Digest, 337-340, 1997.

35. Huang, T.-W., H. Bijan, and T. Itoh, "The implementation of time domain diakoptics in the FDTD method," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 11, 2149-2155, 1994.
doi:10.1109/22.330131

36. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

37. Varadarajan, V. and R. Mittra., "Finite-Difference Time-Domain analysis using distributed computing," IEEE Microwave and Guided Wave Letters, Vol. 4, 144-145, 1994.
doi:10.1109/75.289515

38. Sha, W., X. Wu, and M. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, No. 6, 2006.
doi:10.2529/PIERS060903035033

39. Yee, K. S., "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 5, 302-307, 1966.

40. Yong, Z., K. R. Shao, X. W. Hu, and J. D. Lavers, An upwind leapfrog scheme for computational electromagnetics: CL-FDTD, Progress In Electromagnetics Research Symposium, 22-26, 2005.

41. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701

42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

43. Zhang, Y., W. Ding, and C. H. Liang, "Study on the optimum virtual topology for MPI based parallel conformal FDTD algorithms on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1817-1831, 2005.
doi:10.1163/156939305775696856


© Copyright 2014 EMW Publishing. All Rights Reserved