PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 81 > pp. 279-289

INDOOR ACCURATE RCS MEASUREMENT TECHNIQUE ON UHF BAND

By C.-F. Hu, J.-D. Xu, N. J. Li, and L.-X. Zhang

Full Article PDF (397 KB)

Abstract:
Based on the step-frequency RCS measurement system, high performance absorbers and low scattering supports, employing two log-periodic dipole antennas to carry out the quasi-monostatic measurement and many DSP techniques to reduce the error, the indoor accurate RCS measurement can be completed on UHF band. Experimental results show that the valid data waved less than 1 dB can be obtained over 70% of whole band.

Citation: (See works that cites this article)
C.-F. Hu, J.-D. Xu, N. J. Li, and L.-X. Zhang, " indoor accurate RCS measurement technique on UHF band ," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402
http://www.jpier.org/PIER/pier.php?paper=08011402

References:
1. Dybdal, R. B., "Radar cross section measurements," IEEE Trans. on Antennas and Propagation, Vol. 75, No. 4, 498-516, 1987.

2. Kent, B. M., Comparative measurements of precision radar cross section (RCS) calibration targets, IEEE Antennas and Propagation Society International Symposium, Vol. 4, 412-415, 2001.

3. Wang, Y.-B., Y.-M. Bo, and D. Ben, "Fast RCS computation with general asymptotic waveform evaluation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1873-1884, 2007.
doi:10.1163/156939307781891003

4. Knott, E. F., et al., Radar Cross Section, Artech House Inc, Dedham, MA, 1985.

5. Li, Y.-L., et al., "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610

6. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

7. Johnson, R. C., "Compact range techniques and measurements," IEEE Trans. on Antenna and Propagation, Vol. 17, No. 5, 568-576, 1969.
doi:10.1109/TAP.1969.1139517

8. Kouyoumjian, R. G., Range requirements in radar cross section measurements, Proc. IEEE, Vol. 53, 920-928, 1965.

9. Brumley, S. S., "Extending the low-frequency limits of the compact-range reflector," IEEE Antennas & Propagation, Vol. 38, No. 3, 81-85, 1996.
doi:10.1109/74.511960

10. Venkov, G., M. W. McCall, and D. Censor, "The theory of low-frequency wave physics revisited," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 229-249, 2007.
doi:10.1163/156939307779378763

11. Ott, R. H., "Electromagnetic scattering by buried objects in the HF/VHF/UHF frequency bands," Progress In Electromagnetics Research, Vol. 12, 371-419, 1996.

12. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.

13. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502

14. Hu, C. F., J.-D. Xu, N.-J. Li, and J. Cao, "Application of DSP in the step-frequency RCS measurement system," PIERS Online, Vol. 4, No. 1, 77-80, 2008.

15. Wenher, D. R., High Resolution Radar, Artech House, London, 1987.

16. Long, T., et al., "High range resolution performance of frequency stepped radar signal," CIE Inter. Conf. of Radar, 242-245, 1996.

17. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

18. Connolly, T. M. and E. J. Luoma, "Microwave absorbers," U.S. Patent 4038660, 1977.

19. Abd-El-Raouf, H. E. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007.
doi:10.1163/156939307781891049

20. Hebeish, A. A., et al., "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

21. Zhang, Y., J.Wang, Z. Zhao, and J. Yang, "The analysis of LPDA using MOM and transmission matrix," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1621-1633, 2007.

22. Plonus, M. A., "Theoretical investigation of scattering from plastic foams," IEEE Trans. on Antennas and Propagation, Vol. 13, 88-93, 1965.
doi:10.1109/TAP.1965.1138379

23. Bracewell, R. N., The Fourier Transform and its Applications, 2nd edition, McGraw-Hill, New York, 1986.

24. Brigham, E. O., The Fast Fourier Transform and Its Applications, Prentice-Hall, Englewood Cliffs, NJ, 1988.

25. Okazaki, T., A. Hirata, and Z. Kawasaki, "Time-domain mathematical model of impulsive EM noises emitted from discharges," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1681-1694, 2006.
doi:10.1163/156939306779292345

26. Al-Kamali, F. S., et al., "Frequency domain interference cancellation for single carrier cyclic prefix CDMA systems," Progress In Electromagnetics Research B, Vol. 3, 255-269, 2008.
doi:10.2528/PIERB07121408

27. Harris, F. J., On the use of windows for harmonic analysis with the Discrete Fourier Transform, Proc. IEEE, Vol. 66, No. 1, 51-83, 1977.


© Copyright 2014 EMW Publishing. All Rights Reserved