PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 82 > pp. 77-94

ELECTROMAGNETIC RESONANCES AND FIELD DISTRIBUTIONS OF A CHIRAL FILLED SPHERICAL PERFECTLY CONDUCTING CAVITY

By D. Worasawate, M. A. Shahzad, and M. Krairiksh

Full Article PDF (3,866 KB)

Abstract:
The electromagnetic resonances of a spherical cavity, with a perfectly conducting wall and filled with a homogeneous isotropic chiral medium, is studied using the spherical vector wavefunctions. The characteristic equation and the expressions for the field components, when chirality reaches its maximum value, are derived. The characteristic equation is obtained by imposing the boundary condition on the wall of the spherical cavity. The characteristic equation is solved numerically and reported for the first five modes. These modes are hybrid modes. They are classes as either hybrid electric (HE) modes or hybrid magnetic (HM) modes. The explicit expressions for the field components of the HE and HM modes are given, and the field distributions of a few modes are shown. The chirality is observed to have significant effects on the resonances and the field distributions of a chiral filled spherical perfectly conducting cavity. The results show interesting properties of the cavity, which could be applied to new applications.

Citation:
D. Worasawate, M. A. Shahzad, and M. Krairiksh, "Electromagnetic resonances and field distributions of a chiral filled spherical perfectly conducting cavity," Progress In Electromagnetics Research, Vol. 82, 77-94, 2008.
doi:10.2528/PIER08013008
http://www.jpier.org/PIER/pier.php?paper=08013008

References:
1. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

2. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

3. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "A bianisotropic left-handed metamaterials compose of s-ring resonator," PIERS Online, Vol. 3, No. 5, 593-598, 2007.
doi:10.2529/PIERS060907015601

4. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

5. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.

6. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.
doi:10.1163/156939307783134470

7. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl. Phys., Vol. 67, No. 2, 639-647, 1990.
doi:10.1063/1.345766

8. Li, L.-W., M.-S. Leong, P.-N. Jiao, and W.-X. Zhang, "Analysis of a passive circular loop antenna radiating in the presence of a layered chiral sphere using method of moments," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1593-1611, 2002.
doi:10.1163/156939302X01010

9. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 90-98, 1990.
doi:10.1109/8.43593

10. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronic Letters, Vol. 29, No. 12, 1048-1049, 1993.
doi:10.1049/el:19930699

11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Appl. Opt., Vol. 24, No. 23, 4146-4154, 1985.

12. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 91-96, 1991.
doi:10.1109/8.64441

13. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, No. 7, 1041-1048, 1996.
doi:10.1109/8.504313

14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

15. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method ," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

17. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254

18. Zhao, J. X., "Numerical and analytical formulizations of the extended Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
doi:10.1163/156939306776149815

19. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390

20. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.

21. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Investigation of electromagnetic interaction between a spherical target and a conducting plane," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1703-1715, 2007.

22. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906

23. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502

24. Li, Y.-L., J.-Y. Huang, M.-J. Wang, and J. Zhang, "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610

25. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic resonances and Q factor of a chiral sphere," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 213-219, 2004.
doi:10.1109/TAP.2003.822451

26. Rao, T. C. K., "Resonant frequency and Q-factor of a cylindrical cavity containing a chiral medium," Int. J. Electronics, Vol. 73, No. 1, 183-191, 1992.
doi:10.1080/00207219208925657

27. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Eigenmodes of a chiral sphere with a perfectly conducting coating," J. Phys. D: Appl. Phys., Vol. 22, 825-828, 1989.
doi:10.1088/0022-3727/22/6/020

28. Hui, H. T. and E. K. N. Yung, "The quality factor of a spherical cavity filled with a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 41-52, 2001.
doi:10.1163/156939301X00616

29. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Wave in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

30. Worasawate, D., Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body, Ph.D. Dissertation, Syracuse University, 2002.

31. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

32. Lai, S.-L. and W.-G. Lin, "A five mode single spherical cavity microwave filter," IEEE Microwave Theory and Techniques Society International Microwave Symposium Digest 1992, Vol. 2, 909-912, 1992.


© Copyright 2014 EMW Publishing. All Rights Reserved