PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 82 > pp. 299-318

MORPHOLOGICAL PROCESSING OF ELECTROMAGNETIC SCATTERING DATA FOR ENHANCING THE RECONSTRUCTION ACCURACY OF THE ITERATIVE MULTI-SCALING APPROACH

By D. Franceschini, M. Donelli, P. Rocca, M. Benedetti, A. Massa, and M. Pastorino

Full Article PDF (324 KB)

Abstract:
This work is aimed at presenting a methodology that exploits the scattered electromagnetic radiation collected on a measurement region outside the area under investigation to locate and characterize multiple unknown profiles. In many practical cases, an accurate quantitative imaging of the scenario under test is required and it can be reached by using a high resolution representation of the dielectric profile of the scatterers. Towards this aim, an enhanced iterative multi-resolution procedure that exploits a morphological processing for detecting and focusing on different non-connected regions-of-interest is developed. A suitable set of representative numerical results is presented for demonstrating that the proposed approach is able to efficiently detect the objects located in the test domain and to enhance the accuracy in reconstructing multiple scatterers.

Citation:
D. Franceschini, M. Donelli, P. Rocca, M. Benedetti, A. Massa, and M. Pastorino, "Morphological Processing of Electromagnetic Scattering Data for Enhancing the Reconstruction Accuracy of the Iterative Multi-Scaling Approach," Progress In Electromagnetics Research, Vol. 82, 299-318, 2008.
doi:10.2528/PIER08031704
http://www.jpier.org/PIER/pier.php?paper=08031704

References:
1. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection — Experimental investigation of simple tumors models," IEEE Trans. Microwave Theory Tech., Vol. 53, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

2. Irishina, N., M. Moscoso, and O. Dorn, "Detection of small tumors in microwave medical imaging using level sets and music," PIERS Online, Vol. 2, 43-47, 2006.
doi:10.2529/PIERS050905120050

3. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

4. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, 53-63, 2006.
doi:10.1163/156939306775777350

5. Yu, T. and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 957-973, 2004.
doi:10.1109/TGRS.2003.820601

6. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

7. Salman, A. O., S. Gavrilov, and A. Vertiy, "Subsurface microwave imaging by using angular spectrum of electromagnetic field," Journal of Electromagnetic Waves and Applications, Vol. 16, 1511-1529, 2002.
doi:10.1163/156939302X00958

8. Bolomey, J. Ch., Frontiers in Industrial Process Tomography, Engineering Foundation, 1995.

9. Weedon, W. H., W. C. Chew, and P. E. Mayes, "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501

10. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propagat., Vol. 37, 918-926, 1989.
doi:10.1109/8.29386

11. Miller, E. L. and A. S. Willsky, "A multiscale, statistically based inversion scheme for linearized inverse scattering problems," IEEE Trans. Geosci. Remote Sensing, Vol. 34, 346-357, 1996.
doi:10.1109/36.485112

12. Miller, E. L., "Statistically based methods for anomaly characterization in images from observations of scattered radiation," IEEE Trans. Image Processing, Vol. 8, 92-101, 1999.
doi:10.1109/83.736694

13. Miller, E. L. and A. S. Willsky, "Wavelet-based methods for nonlinear inverse scattering problem using the extended Born approximation," Radio Sci., Vol. 31, 51-65, 1996.
doi:10.1029/95RS03130

14. Bucci, O. M., L. Crocco, and T. Isernia, "An adaptive wavelet-based approach for non destructive evaluation applications," Proc. IEEE Antennas and Propagation Symp., Vol. 3, 1756-1759, 2000.

15. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," IEEE Trans. Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

16. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, 687-719, 1999.
doi:10.1163/156939399X01113

17. Rao, T. and X. Chen, "Analysis of the time-reversal operator for a single cylinder under two-dimensional settings," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, 2153-2165, 2006.
doi:10.1163/156939306779322503

18. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Problems, Vol. 14, 685-706, 1998.
doi:10.1088/0266-5611/14/3/018

19. Ferraye, R., J.-Y. Dauvignac, and C. Pichot, "Reconstruction of complex and multiple shape object contours using a level set method," Journal ofEle ctromagnetic Waves and Applications, Vol. 17, 153-181, 2003.
doi:10.1163/156939303322235770

20. Bucci, O. M., A. Capozzoli, and G. D'Elia, "A novel approach to scatterer localization problem," IEEE Trans. Antennas Propagat., Vol. 51, 2079-2090, 2003.
doi:10.1109/TAP.2003.812233

21. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Tech., Vol. 52, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699

22. Serra, J., Images Analysis and Mathematical Morphology, Academic Press, New York, 1982.

23. Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.

24. Colton, D. and R. Krees, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1992.

25. Semenov, S. Y., A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microwave Theory Tech., Vol. 53, 2284-2294, 2005.
doi:10.1109/TMTT.2005.850459

26. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1697-1708, 2000.
doi:10.1109/36.851968

27. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Tech., Vol. 53, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

28. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 2, 298-312, 2006.
doi:10.1109/TGRS.2005.861412

29. Mertzios, B. G. and K. Tsirikolias, "Coordinate logic filters and their applications in image processing and pattern recognition," Circuits, Systems and Signal Processing, Vol. 17, 517-538, 1998.
doi:10.1007/BF01201506

30. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, 25-34, 2007.
doi:10.1163/156939307779391786

31. Thomas, V., C. Gopakumar, J. Yohannan, A. Lonappan, G. Bindu, A. V. P. Kumar, V. Hamsakutty, and K. T. Mathew, "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Waves and Applications, Vol. 19, 2113-2121, 2005.
doi:10.1163/156939305775570477

32. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, 1761-1774, 2006.
doi:10.1163/156939306779292264


© Copyright 2014 EMW Publishing. All Rights Reserved