PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 84 > pp. 11-26

IMAGING OF OBJECTS THROUGH LOSSY LAYER WITH DEFECTS

By X. Cheng, B.-I. Wu, H. Chen, and J. A. Kong

Full Article PDF (996 KB)

Abstract:
The imaging method when a lossy layer (e.g., a defected metallic slab or a plasma layer) is present between the target and the sensor is demonstrated using the concept of active left-handed material (LHM). The effect of the lossy layer to the reflection coefficients measured by the receiver can be cancelled by imaginatively adding an active LHM layer, which has a same thickness as the lossy layer but an opposite sign of the constitutive parameters. Therefore, the updated reflection coefficients obtained after this data process look like the lossy layer has been removed, which leads to a significant improvement of the target imaging. When the lossy layer is inhomogeneous due to the existence of small defects, we use a homogenization procedure based on the Drude model to characterize its effective constitutive parameters. Our simulation examples shows the effectiveness of the proposed method.

Citation:
X. Cheng, B.-I. Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.2528/PIER08052302
http://www.jpier.org/pier/pier.php?paper=08052302

References:
1. Mahfouz, M., A. Fathy, Y. Yang, E. E. Ali, and A. Badawi, See-through-wall imaging using ultra wideband pulse systems, Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop (AIPR05), IEEE, 2005.

2. Aryanfar, F. and K. Sarabandi, Through wall imaging at microwave frequencies using space-time focusing, Antennas and Propagation Society International Symposium, IEEE, Vol. 3, 3063-3066, 2004.

3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

4. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1764, 2006.
doi:10.1163/156939306779292264

5. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

6. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77, 2001.
doi:10.1126/science.1058847

8. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, Vol. 51, 49-63, 2005.
doi:10.2528/PIER04041401

9. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

10. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

11. Guo, Y. and R. Xu, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007.

12. Li, Z. and T. J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007.
doi:10.2528/PIERL07111808

13. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on Ferrite\R\Nsubstrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.

14. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusetts, 2000.

15. Munk, B. A., Frequency Selective Surfaces Theory and Design, John Wiley & Sons,Inc., 2000.
doi:10.1088/0953-8984/10/22/007

16. Pendry, J. B., A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.

17. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 016608, 2004.


© Copyright 2014 EMW Publishing. All Rights Reserved