Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 84 > pp. 189-203


By R. Sabry and P. W. Vachon

Full Article PDF (441 KB)

Exploitation of the backscattered field polarization over the wide electromagnetic spectrum, from visible to microwave frequencies, provides an approach to advanced target recognition in remote sensing applications. The framework for full coherent characterization of the scattered field that is established here, maximizes the extracted target information. It is also shown that such a methodology, which is theoretically similar to the concept of "partial or compact polarimetry", yields comparable results to full or quadrature-polarized systems by incorporating judicious assumptions and assuming/implementing optimal transmitted or illumination field polarizations. On this basis, common characteristic features, interworking and fusion of different polarimetric sensor products in different regions of spectrum, e.g., radar/SAR and Electro-Optical, are investigated and formulated within a robust framework based on full coherent treatment of the scattered field.

R. Sabry and P. W. Vachon, " advanced polarimetric synthetic aperture radar ( SAR ) and electro - optical ( eo ) data fusion through unified coherent formulation of the scattered EM field ," Progress In Electromagnetics Research, Vol. 84, 189-203, 2008.

1. Henderson, F. M. and A. J. Lewis (eds.), Principles & Applications of Imaging Radars, Vol. 2, 3rd edition, Vol. 2, Chapter 5, John Wiley & Sons, NY, 1998.

2. Können, G. P., Polarized Light in Nature, Cambridge University Press, Cambridge, UK, 1985.

3. Van Zyl, J. J., "Calibration of polarimetric radar images using only image parameters and trihedral corner reflectors," IEEE Trans.Ge osci.R emote Sensing, Vol. 28, 337-348, 1990.

4. Van Zyl, J. J., "Unsupervised classification of scattering behaviour using radar polarimetry data," IEEE Trans.Ge osci.R emote Sensing, Vol. 27, 37-45, 1989.

5. Zebker, H. A. and J. J. Van Zyl, Imaging radar polarimetry: A review, Proceedings of the IEEE, Vol. 79, 1583-1606, 1991.

6. Sinclair, G., The transmission and reception of elliptically polarized waves, Proceedings of the IRE, Vol. 38, No. 2, 148-151, 1950.

7. Kennaugh, E. M., "Effects of the type of polarization on echo characteristics," Reports389-4:35, 389-9, 1952.

8. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, MacMillan, NY, 1959.

9. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Trans. Geosci.R emote Sens., Vol. 45, No. 11, 3397-3404, 2007.

10. Raney, R. K., "Dual-polarized SAR and stokes parameters," IEEE Geosci.R emote Sens.L ett., Vol. 3, No. 3, 317-319, 2006.

11. Souyris, J.-C. and S. Mingot, Polarimetry based on one transmitting and two receiving polarizations: The pi/4 mode, Proc.IGARSS, 629-631, 2002.

12. Souyris, J.-C., P. Imbo, R. Fjortoft, S. Mingot, and J.- S. Lee, "Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode," IEEE Trans.Ge osci.R emote Sens., Vol. 43, No. 3, 634-646, 2005.

13. Lee, J.-S., M. R. Grunes, and E. Pottier, "Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR," IEEE Trans.Ge osci.R emote Sens., Vol. 39, No. 11, 2343-2351, 2001.

14. Stokes, G. G., "On the composition and resolution of streams of polarized light from different sources," Trans.Camb.Philosoph. Soc., Vol. 9, 399-416, 1852.

15. Dubois-Fernandez, P., S. Angelliaume, J.-C. Souyris, F. Garestier, and I. Champion, "The specificity of P-band POLinSAR data over vegetation," The POLinSAR, 2007.

16. Stacy, N. and M. Preiss, Compact polarimetric analysis of Xband SAR data, Proc. 6th Eur. Conf. Synthetic Aperture Radar.

17. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, 1996.

18. Seliga, T. A., The last two decades of multiparameter observations in radar meteorology: Prelude to an even brighter future, Proc.Int.Ge osci.and Remote Sens.Symp., 421-424, 1998.

19. Torlaschi, E. and Y. Gingras, "Alternate transmission of +45◦ and-45◦ slant polarization and simultaneous reception of vertical and horizontal polarization for precipitation measurement," J. Atmos. Ocean. Technol., Vol. 17, No. 8, 1066-1076, 2000.

20. Cohen, M. H., Radio astronomy polarization measurements, Proc.IRE, Vol. 46, No. 1, 172-183, 1958.

21. Green, P. E. and Jr., "Radar measurements of target scattering properties," Radar Astronomy, 1-78, 1968.

22. Stacy, N. J. S. and D. B. Campbell, Stokes vector analysis of lunar radar backscatter, Proc.IEEE IGARSS, 30-33, 1993.

23. Carter, L. M., D. B. Campbell, and B. A. Campbell, "Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo," J. Geophys. Res., Vol. 109, No. E6, 2004.

© Copyright 2014 EMW Publishing. All Rights Reserved