PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 85 > pp. 115-131

SIZE BASED THROUGHPUT OPTIMIZATION OF DLY-ACK OVER THE IEEE 802.15.3 NETWORKS

By R. Lin, Y. Du, L. Rong, and B.-I. Wu

Full Article PDF (167 KB)

Abstract:
In this paper we study on the one hand under delayedacknowledgement (Dly-ACK) mechanisms the option of using ACK Request to improve system robustness, and on the other hand the incorporation of effective retransmission schemes such as hybrid automatic repeat request (HARQ) to improve system throughput for an IEEE 802.15.3 compliant system. An expression of throughput is derived in terms of system parameters and channel conditions. A constrained optimization problem for system throughput is formulated. It is then solved numerically due to the high degree of nonlinearity in the payload size. Our results indicate that under poor channel conditions, the optimal throughput under HARQ scheme is significantly higher than that with ARQ, and larger payload size is proposed to further improve the performance.

Citation:
R. Lin, Y. Du, L. Rong, and B.-I. Wu, "Size Based Throughput Optimization of Dly-Ack Over the IEEE 802.15.3 Networks," Progress In Electromagnetics Research, Vol. 85, 115-131, 2008.
doi:10.2528/PIER08082601
http://www.jpier.org/PIER/pier.php?paper=08082601

References:
1. IEEE Standard 802.15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), Sept. 2003.
doi:10.1109/TCE.2006.1605035

2. IST-2004-507102, My personal Adaptive Global NET (MAGNET). http://www.ist-magnet.org .
doi:10.1109/TCE.2005.1467997

3. IEEE P802.15-04/0137r1, DS-UWB physical layer submission to 802.15 Task Group 3a, Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), 2004.
doi:10.1109/TCE.2003.1209518

4. IEEE P802.15-03/268r3, multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, Project: IEEE P802.15Working Group for Wireless Personal Area Networks(WPANs), 2004.
doi:10.2528/PIERB07121903

5. Kim, J., S. Lee, Y. Jeon, and S. Choi, "Residential HDTV distribution system using UWB and IEEE 1394," IEEE Trans. Consum. Electron., Vol. 52, 116-122, Jan. 2006.
doi:10.2528/PIER08011402

6. Lee, C. S., D. J. Cho, Y. H. You, and H. K. Song, "A solution to improvement of DS-UWB system in the wireless home entertainment network," IEEE Trans. Consum. Electron., Vol. 51, 529-533, May 2005.
doi:10.2528/PIER07082501

7. Park, H. J., M. J. Kim, Y. J. So, Y. H. You, and H. K. Song, "UWB communication system for home entertainment network," IEEE Trans. Consum. Electron., Vol. 49, 302-311, May 2003.
doi:10.2528/PIER06122105

8. Noori, N. and H. Oraizi, "Evaluation of mimo channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.
doi:10.2528/PIER06072803

9. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER06050801

10. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission ," Progress In Electromagnetics Research , Vol. 77, 329-342, 2007.
doi:10.2528/PIER05090801

11. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.1163/156939307783134317

12. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.1163/156939307783134281

13. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on MIMO channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.1163/156939307783152966

14. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.

15. Hua, J., L. Meng, and Z. Xu, "A new method for SNR and Doppler shift estimation in wireless propagations," Journal of Electromagnetic Waves and Applications, Vol. 21, 2431-2441, 2008.
doi:10.1163/156939307780667265

16. Jeong, Y.-S. and J.-H. Lee, "Estimation of time delay using conventional beamforming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, 2413-2420, 2008.
doi:10.2528/PIER08040502

17. Liu, Y.-J., Y.-R. Zhang, and W. Cao, "A novel approach to the refraction propagation characteristics of UWB signal waveforms," Journal of Electromagnetic Waves and Applications,, Vol. 21, 1939-1950, 2007.
doi:10.2528/PIER08040202

18. Gopikrishna, M., D. D. Krishna, A. R. Chandran, and C. K. Aanandan, "Square monopole antenna for ultra wide band communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, 1525-1537, 2007.
doi:10.1109/TVT.2005.863432

19. Abouda, A. A., H. M. El-Sallabi, L. Vuokko, and S. G. Haggman, "Spatial smoothing effect on Kronecker MIMO channel mode in urban microcells," Journal of Electromagnetic Waves and Applications, Vol. 21, 681-696, 2007.
doi:10.1109/TVT.2007.904547

20.. Roozbahani, M. G., E. Jedari, and A. A. Shishegar, "A new link-level simulation procedure of wideband MIMO radio channel for performance evaluation of indoor WLANs," Progress In Electromagnetics Research, Vol. 83, 13-24, 2008.
doi:10.1109/26.87182

21. Kim, J.-H., Y.-H. You, K.-I. Lee, and J.-H. Yi, "Pilot-less synchronization receiver for UWB-based wireless application," Progress In Electromagnetics Research, Vol. 83, 119-131, 2008.
doi:10.1109/JSAC.2005.863862

22. Chen, H., Z. Guo, R. Y. Yao, X. Shen, and Y. Li, "Performance analysis of delayed acknowledgment scheme in UWB-based highrate WPAN ," IEEE Trans. Veh. Technol., Vol. 55, 606-621, Mar. 2006.
doi:10.1109/18.930931

23. Liu, K. H., H. Rutagemwa, X. Shen, and J. W. Mark, "Efficiency and goodput analysis of Dly-ACK in IEEE 802.15.3," IEEE Trans. Veh. Technol., Vol. 56, 3888-3898, Nov. 2007.

24. Shacham, N. and D. Towsley, "Resequencing delay and buffer occupancy in selective repeat ARQ with multiple receivers," IEEE Trans. Commun., Vol. 39, 928-937, June 1991.
doi:10.1109/TWC.2004.843012

25. Xiao, Y., X. Shen, and H. Jiang, "Optimal ACK mechanisms of the IEEE 802.15.3 MAC for ultra-wideband systems," IEEE J. Sel. Areas Commun., Vol. 24, 836-842, Apr. 2006.

26. Caire, G. and D. Tuninetti, "The throughput of hybrid-ARQ protocols for the Gaussian collision channel," IEEE Trans. Inf. Theory, Vol. 47, 1971-1988, July 2001.

27. Bosisio, R., U. Spagnolini, and Y. Bar-Ness, "Multilevel type-II HARQ with adaptive modulation control," Prop. IEEE WCNC’06, Vol. 4, 2082-2087, Apr. 3–6, 2006.

28. Zheng, H. and H. Viswanathan, "Optimizing the ARQ performance in downlink packet data systems with scheduling," IEEE Trans. Wireless Commun., Vol. 4, 495-506, Mar. 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved