PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 85 > pp. 349-366

INVESTIGATIONS OF ISOLATION IMPROVEMENT TECHNIQUES FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) WLAN PORTABLE TERMINAL APPLICATIONS

By H.-T. Chou, H.-C. Cheng, H.-T. Hsu, and L.-R. Kuo

Full Article PDF (292 KB)

Abstract:
Various isolation improvement techniques for MIMO WLAN card bus applications consisted of three closely spaced loop antennas are presented and investigated both numerically and experimentally in this paper. The proposed techniques are easily implemented and proven effective to achieve high isolation among the antennas which is a must for MIMO terminals to receive uncorrelated signals with good system throughputs.

Citation:
H.-T. Chou, H.-C. Cheng, H.-T. Hsu, and L.-R. Kuo, "Investigations of isolation improvement techniques for multiple input multiple output (MIMO) WLAN portable terminal applications," Progress In Electromagnetics Research, Vol. 85, 349-366, 2008.
doi:10.2528/PIER08090905
http://www.jpier.org/PIER/pier.php?paper=08090905

References:
1. Foschini, G. J. and M. J. Gans, "On the limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784

2. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

3. Chen, Y. B., Y. C. Jiao, F. S. Zhang, and H. W. Gao, "A novel small CPW-fed T-shaped antenna for Mimo system applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2027-2036, 2006.
doi:10.1163/156939306779322774

4. Li, H.-J. and C.-H. Yu, "MIMO channel capacity for various polarization combinations," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 3, 301-320, 2004.
doi:10.1163/156939304323085685

5. Min, K.-S., M.-S. Kim, C.-K. Park, and M. D. Vu, "Design for PCS antenna based on WIBRO-MIMO," Progress In Electromagnetics Research Letters, Vol. 1, 77-83, 2008.
doi:10.2528/PIERL07111810

6. Gao, G.-P., X.-X. Yang, and J.-S. Zhang, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.

7. Koo, B.-W., M.-S. Baek, and H.-K. Song, "Multiple antenna transmission technique for UWB system," Progress In Electromagnetics Research Letters, Vol. 2, 177-185, 2008.

8. Abouda, A. A. and S. G. Hggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

9. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ULA azimuthal orientation on MIMO channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801

10. Svantesson, T. and A. Ranheim, "Mutual coupling effects on the capacity of multi element antenna systems," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP) ’01, Vol. 4, 2485-2488, 2001.

11. Fredrick, J. D., Y. Wang, and T. Itoh, "Smart antenna based on spatial multiplexing of local elements (SMILE) for mutual coupling reduction," IEEE Transcation on Antenna and Propagation, Vol. 52, 106-114, 2004.
doi:10.1109/TAP.2003.818798

12. Choi, J., V. Govind, and M. Swaminathan, "A novel electromagnetic bandgap (EBG) structure for mixed-signal system applications," Proc. IEEE Radio and Wireless Conference, 243-246, 2004.
doi:10.1109/RAWCON.2004.1389120

13. Yang, L., M. Fan, and Z. Feng, "A spiral electromagnetic bandgap (EBG) structure and its application in microstrip antenna arrays," Proc. IEEE APMC, Vol. 3, 4-7, 2005.

14. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

15. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural network-based design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, No. 8, 1165-1169, 2007.
doi:10.2529/PIERS070215124728

16. Ohishi, T., N. Oodachi, S. Sekine, and H. Shoki, "A method to improve the correlation coefficient and mutual coupling for diversity antenna," 2005 IEEE International Symposium on Antenna and Propagation, 507-510, 2005.
doi:10.1109/APS.2005.1551365

17. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.

18. Khaleghi, A., "Diversity techniques with parallel dipole antennas: radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2006.
doi:10.2528/PIER06062401

19. Tu, T.-C., C. M. Li, and C.-C. Chiu, "The performance of polarization diversity schemes in outdoor micro cells," Progress In Electromagnetics Research, Vol. 55, 175-188, 2005.
doi:10.2528/PIER04122901

20. Su, D., D. Fu, T. N. C. Wang, and H. Yang, "Broadband polarization diversity base station antenna for 3G communication system," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 493-500, 2008.
doi:10.1163/156939308784150254

21. Kuo, L. C., H. R. Chuang, Y. C. Kan, T. C. Huang, and C. H. Ko, "A study of planar printed dipole antennas for wireless communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 637-652, 2007.
doi:10.1163/156939307780667355

22. Chen, Y. B., T. B. Chen, Y. C. Jiao, and F. S. Zhang, "A reconfigurable microstrip antenna with switchable polarization," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1391-1398, 2006.
doi:10.1163/156939306779276820

23. Mukherjee, P., B. Gupta, and R. Bhattacharjee, "Dual band coplanar microstrip antenna with polarization diversity," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1323-1330, 2003.
doi:10.1163/156939303322520098

24. Kalaye, B. M. B. and J. Rashed-Mohassel, "A broadband and high isolation CPW fed microstrip antenna array," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 325-334, 2008.
doi:10.1163/156939308784160767

25. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "Coupling and footprint numerical features for a bow-tie antenna array," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 779-794, 2005.
doi:10.1163/1569393054069037

26. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Ch. 2 and Ch. 5, John Wiley, New York, 1998.

27. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, 79-91, 1992.
doi:10.1109/5.119568

28. Wu, D.-J. and H.-T. Chou, "Radiation of a handset monopole antenna in the presence of a finite shielding sheet for the purpose of SAR reduction," 2002 IEEE International Symposium on Antenna and Propagation, 452-455, 2002.

29. Mahmoud, M. S., T.-H. Lee, and W. D. Burnside, R-card edge treatment for compact range reflector (2D Case), Technical Report 727723-14, Electro Science Laboratory, The Ohio State University, 1998.


© Copyright 2014 EMW Publishing. All Rights Reserved