Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 88 > pp. 321-335


By S. K. Awasthi and S. P. Ojha

Full Article PDF (133 KB)

Here a photonic crystal plate polarizer (with periodic air gaps), operating over a broad wavelength range extending from 1000nm to 1770nm and with a wide angular field of 16o measured in air, is suggested. The polarizer has an average degree of polarization equal to 0.9999, and a high extinction ratio (>8.308×104) in transmitted light. Since the plate polarizer does not require optical cements, it is most suitable for use with high power laser systems. It is also smaller in size as compared with multilayered cube polarizers.

S. K. Awasthi and S. P. Ojha, "Wide-angle broadband plate polarizer with 1D photonic crystal," Progress In Electromagnetics Research, Vol. 88, 321-335, 2008.

1. Choudhury, P. K., P. Khastgir, S. P. Ojha, D. K. Mahapatra, and O. N. Singh, "Design of an optical filter as a monochromatic selector from atomic emissions," J. Opt. Soc. Am. A, Vol. 9, 1007-1010, 1992.

2. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

3. Zandi, O., Z. Atlasbaf, and K. Forooraghi, "Flat multilayer dielectric reflector antennas," Progress In Electromagnetics Research, Vol. 72, 1-19, 2007.

4. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.

5. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. S. Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

6. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 19, 1991-1996, 2005.

7. Zhao, L. P., X. Zhai, B. Wu, T. Su, W. Xue, and C.-H. Liang, "Novel design of dual-mode bandpass filter using rectangle structure," Progress In Electromagnetics Research B, Vol. 3, 131-141, 2008.

8. Rojas, J. A. M., J. Alpuente, J. PiEoeneiro, and R. Sanchez, "Rigorous full vectorial analysis of electromagnetic wave propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.

9. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1439-1453, 2006.

10. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional-dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.

11. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional-visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.

12. Thomsen, M. and Z. L. Wu, "Polarizing and reflective coatings based on half-wave layer pairs," Appl. Opt., Vol. 36, 307-313, 1997.

13. Monga, J. C., "Multilayer thin-film polarizers with reduced electric-field intensity," J. Mod. Opt., Vol. 36, 769-784, 1989.

14. MacNeille, S. M., "Beam splitter,", U. S. patent 2, 403, 731, 1946.

15. Mouchart, J., J. Begel, and E. Duda, "Modified MacNeille cube polarizer for a wide angular field," Appl. Opt., Vol. 28, 2847-2853, 1989.

16. Li, L. and J. A. Dobrowolski, "Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter," Appl. Opt., Vol. 35, 2221-2225, 1996.

17. Li, L. and J. A. Dobrowolski, "High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle," Appl. Opt., Vol. 39, 2754-2771, 2000.

18. Hecht, E., Optics, 4th edition, 349, Addison Wesley, 2002.

19. Li, B., K.-J. Lee, H.-T. Chou, and W. Gu, "A polarization compensation approach utilizing a paraboloid photonic-crystal structure for crossed-dipole excited reflector antennas," Progress In Electromagnetics Research, Vol. 85, 393-408, 2008.

20. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.

21. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.

22. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Design of photonic band gap filter," Progress In Electromagnetics Research, Vol. 81, 225-235, 2008.

23. Dubey, R. S. and D. K. Gautam, "Development of simulation tools to study optical properties of one-dimensional photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 849-860, 2008.

24. Li, L., "The design of optical thin film coatings with total and frustrated total internal reflection," Optics and Photonics News, 24-30, 2003.

25. Dobrowolski, J. A. and A. Waldorf, "High-performance thin film polarizer for the UV and visible spectral regions," Appl. Opt., Vol. 20, 111-116, 1981.

26. Gilo, M. and K. Rabinovitch, "Design parameters of thin-film cubic-type polarizers for high power lasers," Appl. Opt., Vol. 26, 2518-2521, 1987.

27. Born, M. and E. Wolf, "Basic properties of the electromagnetic field," Principles of Optics, 1-70, Cambridge University Press, U.K., 1980.

28. Yeh, P., "Optics of periodic layered media," Optical Waves in Layered Media, 118-142, Wiley, New York, 1998.

29. Cowan, B., "Optical damage threshold of silicon for ultrafast infrared pulses," Proceedings of AIP Conference on Advanced Accelerator Concepts, Vol. 877, 837-843, 2006.

30. Bristow, A. D., V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, "Polarization conversion in the reflectivity properties of photonic crystal waveguides," IEEE J. Q. E., Vol. 38, 880-884, 2002.

31. Marty, F., L. Rousseau, B. Saadany, B. Mercier, O. Francais, Y. Mita, and T. Bourouina, "Advanced silicon etching techniques based on deep reactive ion etching (DRIE) for silicon harms and 3D micro- and nano-structures," Microelectronics Journal, Elsevier Science, Vol. 36, 673-677, 2005.

32. Jeff Raaphorst, Process Engineer, Micralyne Inc., "DRIE-Deep Reactive Ion Etching,", http://www.micralyne.com/edition4.newslyne/html.

© Copyright 2014 EMW Publishing. All Rights Reserved