PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 88 > pp. 53-71

TELEGRAPHIST'S EQUATIONS FOR RECTANGULAR WAVEGUIDES AND ANALYSIS IN NONORTHOGONAL COORDINATES

By R. Dusseaux and C. Faure

Full Article PDF (160 KB)

Abstract:
In our previous works, we have presented one differential method for the efficient calculation of the modal scattering matrix of junctions in rectangular waveguides. The formalism proposed relies on the Maxwell's equations under their covariant form written in a nonorthogonal coordinate system fitted to the structure under study. On the basis of a change of variables, we show in this paper that the curvilinear method and the generalized telegraphist's method lead to the same system of coupled differential equations.

Citation:
R. Dusseaux and C. Faure, "Telegraphist's equations for rectangular waveguides and analysis in nonorthogonal coordinates," Progress In Electromagnetics Research, Vol. 88, 53-71, 2008.
doi:10.2528/PIER08101707
http://www.jpier.org/pier/pier.php?paper=08101707

References:
1. Dusseaux, R., P. Cornet, and P. Chambelin, "Etude de transformateur plan-E dans un systeme de coordonnees non-orthogonales," Ann. Telecommunic, No. 5-6, 311-323, 1999.

2. Dusseaux, R., P. Chambelin, and C. Faure, "Analysis of rectangular waveguide H-plane junctions in nonorthogonal coordinate system," Progress In Electromagnetics Progress, Vol. 28, 205-229, 2000.
doi:10.2528/PIER99092001

3. Dusseaux, R. and C. Faure, "Analyse de composants plan-E symetriques en guides d’onde a section rectangulaire," Ann. Telecommunic, No. 9-10, 834-855, 2002.

4. Cornet, P., R. Dusseaux, and J. Chandezon, "Wave propagation in curved waveguides of rectangular cross section," IEEE Trans. Microwave Theory Tech., Vol. 47, 965-972, 1999.
doi:10.1109/22.775427

5. Reiter, G., "Generalized telegraphist’s equations for waveguides of varying cross-sections," Proc. Inst. Elec. Eng., Vol. 106B, supplement 13, 54-57, 1959.

6. Schelkunoff, S. A., "Generalized telegraphist’s equations for waveguides," Bell System Technical Journal, Vol. 31, 784-801, 1952.

7. Solymar, L., "Spurious mode generation in nonuniform waveguide," IEEE Trans. Microwave Theory Tech., Vol. 7, 379-383, 1959.
doi:10.1109/TMTT.1959.1124595

8. Wexler, A., "Solution of waveguide discontinuity by modal analysis," IEEE Trans. Microwave Theory Tech., Vol. 15, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521

9. Lewin, L., Theory of Waveguides, Newness-Butterworth, London, 1975.

10. Itoh, T., Numerical Techniques for Microwave and Millimeterwave Passive Structures, John Wiley & Sons, New York, 1989.

11. Koshiba, M., M. Sato, and M. Suzuki, "Application of finite-element method to H-plane waveguide discontinuities," Electr. Lett., Vol. 18, 364-365, 1982.
doi:10.1049/el:19820249

12. Koshiba, M., M. Sato, and M. Suzuki, "Application of the boundary-element method to waveguide discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 34, 301-307, 1986.
doi:10.1109/TMTT.1986.1133330

13. Huting, W. A. and K. Webb, "Comparison of modes matching and differential equations techniques in the analysis of waveguide transitions," IEEE Trans. Microwave Theory Tech., Vol. 39, 508-517, 1991.

14. Rozzi, T. and M. Mongiardo, "E-plane steps in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 39, 1279-1288, 1991.
doi:10.1109/22.85401

15. Reiter, J. M. and F. Arndt, "Rigorous analysis of arbitrarily shaped H- and E-plane discontinuities in rectangular waveguides by a full-wave boundary contour mode-matching method," IEEE Trans. Microwave Theory Tech., Vol. 43, 796-801, 1995.
doi:10.1109/22.375226

16. Amari, S., J. Bornemann, and R. Vahldick, "Accurate analysis of scattering form multiple waveguide discontinuities using the coupled-integral equations technique," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 12, 1623-1644, 1996.
doi:10.1163/156939396X00351

17. El Sabbagh, M. and K. A. Zaki, "Modeling of rectangular waveguide junctions containing cylindrical posts," Progress In Electromagnetics Progress, Vol. 33, 299-301, 2001.
doi:10.2528/PIER01022603

18. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite-element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396

19. Guo, Y., Y. Xu, L. Xia, and R. Xu, "Efficient optimization of a Ka-band branch waveguide power divider," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 17-26, 2008.
doi:10.1163/156939308783122698

20. Wang, Z. X., W. B. Dou, and Z. L. Mei, "A compact H-plane magic tee designed at W-band," Progress In Electromagnetics Progress B, Vol. 5, 35-48, 2008.
doi:10.2528/PIERB08011706

21. Panda, D. K., A. Chakraborty, and S. R. Chouldhury, "Analysis of co-channel interfererence at waveguide joints using multiple cavity modelling technique," Progress In Electromagnetics Progress Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704

22. Marcelin, E., Application des equations de Maxwell covariantes a l’etude de la propagation dans les guides d’ondes coudes, These d’Universite, Universite Blaise Pascal, Clermont-Ferrand, France, 1992.

23. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.


© Copyright 2014 EMW Publishing. All Rights Reserved