PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 88 > pp. 255-273

AN EFFICIENT SAI PRECONDITIONING TECHNIQUE FOR HIGHER ORDER HIERARCHICAL MLFMM IMPLEMENTATION

By D.-Z. Ding, R.-S. Chen, and Z. Fan

Full Article PDF (252 KB)

Abstract:
A new set of higher order hierarchical basis functions based on curvilinear triangular patch is proposed for expansion of the current in electrical field integral equations (EFIE) solved by method of moments (MoM). The multilevel fast multipole method (MLFMM) is used to accelerate matrix-vector product. An improved sparse approximate inverse (SAI) preconditioner in the higher order hierarchical MLFMM context is constructed based on the near-field matrix of the EFIE. The quality of the SAI preconditioner can be greatly improved by use of information from higher order hierarchical MLFMM implementation. Numerical experiments with a few electromagnetic scattering problems for open structures are given to show the validity and efficiency of the proposed SAI preconditioner.

Citation:
D.-Z. Ding, R.-S. Chen, and Z. Fan, "An efficient sai preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501
http://www.jpier.org/PIER/pier.php?paper=08111501

References:
1. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

2. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

3. Huang, E. X. and A. K. Fung, "An application of sampling theorem to moment method simulation in surface scattering," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 531-546, 2006.
doi:10.1163/156939306776117063

4. Wang, C.-F. and Y.-B. Gan, "2D cavity modeling using method of moments and iterative solvers," Progress In Electromagnetics Research, Vol. 43, 123-142, 2003.
doi:10.2528/PIER03020802

5. Danesfahani, R., S. Hatamzadeh-Varmazyar, E. Babolian, and Z. Masouri, "Applying Shannon wavelet basis functions to the method of moments for evaluating the radar cross section of the conducting and resistive surfaces," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601

6. Varmazyar, S. H. and M. N. Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

7. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

8. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

9. Chew, W. C., J. M. Jin, E. Midielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

10. Fan, Z. H., D. Z. Ding, and R. S. Chen, "The efficient analysis of electromagnetic scattering from composite structures using hybrid CFIE-IEFIE," Progress In Electromagnetics Research B, Vol. 10, 131-143, 2008.
doi:10.2528/PIERB08091606

11. Pan, X.-M. and X.-Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321

12. Li, L. and Y.-J. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed realimage simulated method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2177-2188, 2006.
doi:10.1163/156939306779322521

13. Wang, P. and Y.-J. Xie, "Scattering and radiation problem of surface/surface junction structure with multilevel fast multipole algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2189-2200, 2006.
doi:10.1163/156939306779322567

14. Zhao, X. W., C.-H. Liang, and L. Liang, "Multilevel fast multipole algorithm for radiation characteristics of shipborne antennas above seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
doi:10.2528/PIER08012003

15. Zhao, X. W., X.-J. Dang, Y. Zhang, and C.-H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003

16. Andersen, L. S. and J. L. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 112-120, 1999.
doi:10.1109/8.753001

17. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higer order hierarchical legendre basis fuctions for electromagnetic modeling," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2985-2995, 2004.
doi:10.1109/TAP.2004.835279

18. Chew, W. C., et al., "Integral equation solvers for real world applications — Some challenge problems," Proceedings of IEEE International Symposium on Antennas and Propagation, 91-93, 2006.
doi:10.1109/APS.2006.1710460

19. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

20. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.

21. Chow, E. and Y. Saad, "Experimental study of ILU preconditioners for indefinite matrices," Journal of Computational and Applied Mathematics, Vol. 86, 387-414, 1997.
doi:10.1016/S0377-0427(97)00171-4

22. Rui, P. L., R. S. Chen, Z. H. Fan, J. Hu, and Z. P. Nie, "Perturbed incomplete ILU preconditioner for efficient solution of electric field integral equations," IET Microwaves, Antennas & Propagation, Vol. 1, No. 5, 1059-1063, 2007.
doi:10.1049/iet-map:20070082

23. Carpentieri, B., I. S. Duff, L. Griud, and G. Alleon, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM Journal on Scientific Computing, Vol. 27, No. 3, 774-792, 2005.
doi:10.1137/040603917

24. Rui, P. L. and R. S. Chen, "An efficient sparse approximate inverse preconditioning for FMM implementation," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1746-1750, 2007.
doi:10.1002/mop.22538

25. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetic," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, 1997.
doi:10.1109/8.558649

26. Donepudi, K. C., J. M. Jin, J. M. Song, and W. C. Chew, "A higher order parallelized multilevel fast multipole algorithm for 3-D scattering," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1069-1078, 2001.
doi:10.1109/8.933487

27. Lee, J.-F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 51, 1855-1863, 2003.
doi:10.1109/TAP.2003.814736

28. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Scattering from finite bodies of translation: Plates, curved surfaces, and noncircular cylinders," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 6, 847-852, 1983.
doi:10.1109/TAP.1983.1143174


© Copyright 2014 EMW Publishing. All Rights Reserved