PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 167-181

MODAL DISPERSION CHARACTERISTICS OF A BRAGG FIBER HAVING PLASMA IN THE CLADDING REGIONS

By V. Singh and D. Kumar

Full Article PDF (529 KB)

Abstract:
The modal dispersion relation of electromagnetic waves in a Bragg fiber having plasma in the cladding regions is investigated analytically. The proposed Bragg fiber consists of a low index central region having air surrounded by a large number of periodic cladding layers of alternating high and low refractive indices of dielectric and plasma respectively. The modal dispersion relation is obtained by solving Maxwell wave equations using a simple boundary matching method. The analysis shows that the normalized frequency parameter (also called V -number) is frequency independent. This indicates that the proposed Bragg fiber may be used for single mode operation without high frequency limitation as well as with little loss of energy compared to the conventional dielectric waveguide.

Citation:
V. Singh and D. Kumar, "Modal Dispersion Characteristics of a Bragg Fiber Having Plasma in the Cladding Regions," Progress In Electromagnetics Research, Vol. 89, 167-181, 2009.
doi:10.2528/PIER08112702
http://www.jpier.org/PIER/pier.php?paper=08112702

References:
1. Singh, V., B. Prasad, and S. P. Ojha, "Analysis of the modal characteristics of a Bragg fiber with a small number of claddings using a very simple analytical method," Microwave Opt. Techncol. Letter, Vol. 46, 271-275, 2005.
doi:10.1002/mop.20963

2. Yeh, P. and A. Yariv, "Theory of bragg fiber," J. Opt. Soc. Am., Vol. 68, 1196-1201, 1978.
doi:10.1364/JOSA.68.001196

3. Fink, Y., D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol., Vol. 17, 2039-2041, 1999.
doi:10.1109/50.802992

4. Georgr, G., Y. Xu, and A. Yariv, "Comparative study of air core and coaxial Bragg fibers: Single mode transmission and dispersion characteristics," Optics Express, Vol. 9, 733-746, 2001.

5. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "An optical waveguide with a hypocycloidal core cross-section having a conducting sheath helical winding on the core cladding boundary --- A comparative modal dispersion study vis-a-vis standard fiber with a sheath winding," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1307-1326, 2005.
doi:10.1163/156939305775525846

6. Prajapati, Y., V. Singh, and J. P. Saini, "Modal analysis and dispersion curves of a Bragg fiber having asymmetric loop boundary," Progress In Electromagnetics Research, Vol. 87, 117-130, 2008.
doi:10.2528/PIER08090102

7. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902

8. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.
doi:10.2528/PIERB08031101

9. Dasgupta, S., B. P. Pal, and M. R. Shenoy, Bragg Fibers: Guided Wave Optical Components and Devices, B. P. Pal (eds.), Elsevier, 2005.

10. Xu, Y., R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Optics Letters, Vol. 25, 1756-1758, 2000.
doi:10.1364/OL.25.001756

11. Xu, Y., G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fiber," J. Lightwave Technol., Vol. 20, 428-440, 2002.

12. Xu, Y., et al., "Asymptotic analysis of silicon based Bragg fibers," Optics Express, Vol. 2, 1039-49, 2004.

13. Marcon, J., F. Brechet, and P. Roy, "Design of weakly guiding Bragg fibers for chromatic dispersion shifting toward short wavelengths," J. Opt. A, Vol. 3, S144-S153, 2001.

14. Argyros, A., "Guided modes and loss in Bragg fibers," Optics Express, Vol. 10, 1411-1417, 2002.

15. Pal, B. P., S. Dasgupta, and M. R. Shenoy, "Bragg fiber design for transparent metro networks," Optics Express, Vol. 13, 621-624, 2005.
doi:10.1364/OPEX.13.000621

16. Dasgupta, S., B. P. Pal, and M. R. Shenoy, "Design of dispersion compensating Bragg fiber with an ultrahigh figure of merit," Optics Express, Vol. 30, 1917-1919, 2005.

17. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

18. Shen, H. M., "Plasma waveguide: A concept to transfer electromagnetic energy in space," J. Appl. Phys., Vol. 69, 6827-6835, 1991.
doi:10.1063/1.347672

19. Shen, H. M. and H. Y. Pao, "The plasma waveguide with a finite thickness of cladding," J. Appl. Phys., Vol. 70, 6653, 1991.
doi:10.1063/1.349837

20. Hoja, H. and A. Mase, "Dispersion relation of EM waves in one dimensional Plasma photonic crystal," J. Plasma Fusion Research, Vol. 89, 177, 2004.
doi:10.1585/jspf.80.177

21. Hu, B. J. and C. L. Ruan, "Propagation properties of a plasma waveguide in an external magnetic field," J. Appl. Phys., Vol. 31, 2151-2154, 1998.

22. Yang, Y. and L. Shenggang, "Dispersion characteristics of plasma mode in corrugated plasma waveguide," International J. Infrared and Millimeter Waves, Vol. 20, 1725-1730, 1999.
doi:10.1023/A:1021745127565

23. Mirzanejhad, S. and B. Maraghechi, "Dispersion characteristics of waves in a waveguide with an annular plasma column," Physics of Plasma, Vol. 5, 4070-4078, 1998.
doi:10.1063/1.873129

24. Vivek, S., M. Joshi, B. Prasad, and S. P. Ojha, "Modal dispersion characteristics and waveguide dispersion of an optical waveguide having a new unconventional core cross-section," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 455-468, 2004.
doi:10.1163/156939304774113061

25. Vivek, S., S. N. Maurya, B. Prasad, and S. P. Ojha, "Conducting sheath helical winding on the core-cladding interface of a lightguide having a Piet Hein core cross-section and a standard optical fiber of circular cross-section --- A comparative study," Progress In Electromagnetics Research, Vol. 59, 231-249, 2006.

26. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross section of the shape of a cardiod," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

27. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved