Vol. 89
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-01-12
Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion
By
Progress In Electromagnetics Research, Vol. 89, 183-198, 2009
Abstract
The broadband wavelength conversion based on four-wave mixing in a silicon nanowire waveguide is theoretically investigated by taking into account the influence of the waveguide loss and free-carrier absorption on the phase-matched condition. The lossy wavelength conversion is compared with the lossless one in terms of conversion efficiency and bandwidth. The size of the silicon-oninsulator nanowire waveguide is optimized to be 400nm × 269nm for broadband wavelength conversion by realizing a flattened dispersion. The pump wavelength is also optimized to 1538.7nm in order to further enhance the conversion bandwidth. A 3-dB conversion bandwidth of over 280nm is achieved in the optimized waveguide with the optimized pump wavelength.
Citation
Xingzhi Zhang, Shiming Gao, and Sailing He, "Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion," Progress In Electromagnetics Research, Vol. 89, 183-198, 2009.
doi:10.2528/PIER08120601
References

1. Moghimi, M. J., H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
doi:10.2528/PIERB08041303

2. Fukuda, H., K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express, Vol. 13, No. 12, 4629-4637, 2005.
doi:10.1364/OPEX.13.004629

3. Rong, H., Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express, Vol. 14, No. 3, 1182-1188, 2006.
doi:10.1364/OE.14.001182

4. Kuo, Y.-H., H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express, Vol. 14, No. 24, 11721-11726, 2006.
doi:10.1364/OE.14.011721

5. Yamada, K., H. Fukuda, T. Tsuchizawa, T. W. A.-T. Watanabe, T. S. A.-T. Shoji, and S. I. A.-S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Tech. Lett., Vol. 18, No. 9, 1046-1048, 2006.
doi:10.1109/LPT.2006.873469

6. Foster, M. A., A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion insilicon nanowaveguides," Opt. Express, Vol. 15, No. 20, 12949-12958, 2007.
doi:10.1364/OE.15.012949

7. Rostami, A. and A. Salmanogli, "Investigation of light amplification in Si-nanocrystal-Er doped optical fiber," Progress In Electromagnetics Research B, Vol. 9, 27-51, 2008.
doi:10.2528/PIERB08061303

8. Foster, M. A., A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, Vol. 441, No. 7096, 960-963, 2006.
doi:10.1038/nature04932

9. Salem, R., M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photon., Vol. 2, No. 1, 35-38, 2008.
doi:10.1038/nphoton.2007.249

10. Lin, Q., O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express, Vol. 15, No. 25, 16604-16644, 2007.
doi:10.1364/OE.15.016604

11. Boyraz, O., T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express, Vol. 12, No. 5, 829-834, 2004.
doi:10.1364/OPEX.12.000829

12. Hsieh, I. W., X. G. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. Mcnab, and Y. A. Vlasov, "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express, Vol. 15, No. 3, 1135-1146, 2007.
doi:10.1364/OE.15.001135

13. Espinola, R., J. Dadap, J. R. Osgood, S. McNab, and Y. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express, Vol. 13, No. 11, 4341-4349, 2005.
doi:10.1364/OPEX.13.004341

14. Raghunathan, V., R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightwave Technol., Vol. 23, No. 6, 2094-2102, 2005.
doi:10.1109/JLT.2005.849895

15. Tsang, H. K., C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett., Vol. 80, No. 3, 416-418, 2002.
doi:10.1063/1.1435801

16. Liu, A. S., H. S. Rong, and M. Paniccia, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express, Vol. 12, No. 18, 4261-4268, 2004.
doi:10.1364/OPEX.12.004261

17. Turner, A. C., M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express, Vol. 16, No. 7, 4881-4887, 2008.
doi:10.1364/OE.16.004881

18. Liu, L., J. van Campenhout, G. Roelkens, D. van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. M. Fedeli, and R. Baets, "Ultralow-power all-optical wavelength conversion in a silicon-on-insulator waveguide based on a heterogeneously integrated III-V microdisk laser," Appl. Phys. Lett., Vol. 93, No. 06, 001107-1-061107-3, 2008.
doi:10.1063/1.2967338

19. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., Vol. 29, No. 11, 1209-1211, 2004.
doi:10.1364/OL.29.001209

20. Baehr-Jones, T., M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett., Vol. 86, No. 08, 081101-1-081101-3, 2005.
doi:10.1063/1.1871360

21. Liu, L., Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express, Vol. 13, No. 17, 6645-6650, 2005.
doi:10.1364/OPEX.13.006645

22. Turner, A. C., C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express, Vol. 14, No. 10, 4357-4362, 2006.
doi:10.1364/OE.14.004357

23. Lamont, M. R. E., B. T. Kuhlmey, and C. M. de Sterke, "Multiorder dispersion engineering for optimal four-wave mixing," Opt. Express, Vol. 16, No. 10, 7551-7563, 2008.

24. Zhang, X., S. Gao, and S. He, "Optimal design of silicon-on-insulator nano-wire waveguides for broadband wavelength conversion," Proceedings of Asia Optical Fiber Communications and Optoelectronic Conference, October 2008.

25. Lin, Q., J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroad-band parametric generation and wavelength conversion in silicon waveguides," Opt. Express, Vol. 14, No. 11, 4786-4799, 2006.
doi:10.1364/OE.14.004786

26. Liu, X., W. M. Green, X. Chen, I-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, and Jr., "Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires," Opt. Lett., Vol. 33, No. 24, 2889-2891, 2008.
doi:10.1364/OL.33.002889

27. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701

28. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902

29. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

30. Chu, S. T. and S. K. Chaudhuri, "Finite-difference time-domain method for optical waveguide analysis," Prog. Electromagn. Res., Vol. 11, 255-300, 1995.

31. Hernandez-Lopez, M. A. and M. Quintillan, "Propagation characteristics of modes in some rectangular waveguides using the finite-difference time-domain method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1707-1722, 2000.
doi:10.1163/156939300X00491

32. Xu, C. L. and W. P. Huang, "Finite-difference beam propagation method for guide-wave optics," Prog. Electromagn. Res., Vol. 11, 1-49, 1995.