PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 121-134

A NOVEL IGA-EDSPSO HYBRID ALGORITHM FOR THE SYNTHESIS OF SPARSE ARRAYS

By S. Zhang, S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong

Full Article PDF (615 KB)

Abstract:
Based on the improvements of both Genetic Algorithm and Particle Swarm Optimization, a novel IGA-edsPSO (Improved Genetic Algorithm-extremum disturbed simple Particle Swarm Optimization) Hybrid algorithm is proposed in this paper. An improved performance of GA is achieved by reducing the array space. By discarding the particle velocity vector in the PSO evolutionary equation, the sPSO (simple PSO) can avoid the problem of slow later convergence velocity and low precision caused by determining the maximal velocity vector factitiously. And the edsPSO can overstep local extremum point more effectively with the help of the extremum disturbed factor. The proposed IGA-edsPSO Hybrid algorithm is used in the design of the sparse arrays with minimum element spacing constraint. Given the array aperture and the number of the array elements, the suppression of the peak sidelobe level (PSLL) with a certain half power beamwidth (HPBW) restriction is implemented with a high efficiency by optimizing the HPBW and PSLL synchronously. The simulation results show that faster convergence velocity (which means less computation time) and lower sidelobe level are obtained using IGA-edsPSO compared to IGA, standard PSO, GA-PSO and GA-sPSO.

Citation:
S. Zhang, S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806
http://www.jpier.org/PIER/pier.php?paper=08120806

References:
1. Yan, K.-K. and Y. Lu, "Sidelobe reduction in array-pattern synthesis using genetic algorithm," IEEE Trans. Antennas and Propag., Vol. 45, No. 7, 1117-1122, 1997.
doi:10.1109/8.596902

2. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

3. Kumar, B. P. and G. R. Branner, "Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry," IEEE Trans. Antennas and Propag., Vol. 53, No. 2, 621-634, 2005.
doi:10.1109/TAP.2004.841324

4. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas and Propag., Vol. 47, No. 3, 511-523, 1999.
doi:10.1109/8.768787

5. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

6. Chen, K., Z. He, and C. Han, "A modifed real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. Antennas and Propag., Vol. 54, No. 7, 2169-2173, 2006.
doi:10.1109/TAP.2006.877211

7. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas and Propag., Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602

8. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

9. Ares Pena, F. J., J. A. Rodriguez, E. V. Lopez, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas and Propag., Vol. 47, No. 3, 506-510, 1999.
doi:10.1109/8.768786

10. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

11. Chen, H.-T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

12. Haupt, R. L., "Antenna design with a mixed integer genetic algorithm," IEEE Trans. Antennas and Propag., Vol. 55, No. 3, 577-582, 2007.
doi:10.1109/TAP.2007.891510

13. Petko, J. S. and D. H. Werner, "An autopolyploidy-based genetic algorithm for enhanced evolution of linear polyfractal arrays," IEEE Trans. Antennas and Propag., Vol. 55, No. 3, 583-593, 2007.
doi:10.1109/TAP.2007.891507

14. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. IEEE Int. Conf. Neural Networks, 1942-1948, Perth, Australia, 1995.
doi:10.1109/ICNN.1995.488968

15. Trelea, I. C., "The particle swarm optimization algorithm: Convergence analysis and parameter selection," Information Processing Letters, Vol. 85, No. 6, 317-325, 2003.
doi:10.1016/S0020-0190(02)00447-7

16. Clerc, M. and J. Kennedy, "The particle swarm-explosion,stability and convergence in multid-imensional complex space," IEEE Trans. Evol. Comput., Vol. 6, No. 1, 58-73, 2002.
doi:10.1109/4235.985692

17. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetic," IEEE Trans. Antennas and Propag., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

18. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004

19. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas and Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

20. Donelli, M., S. Caorsi, F. De Natale, M. Pastorina, and A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301


© Copyright 2014 EMW Publishing. All Rights Reserved