PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 91 > pp. 319-332

MODIFIED PLANE WAVE METHOD ANALYSIS OF DIELECTRIC PLASMA PHOTONIC CRYSTAL

By L.-M. Qi and Z. Yang

Full Article PDF (188 KB)

Abstract:
Dispersion characteristics of two types of two-dimension dielectric plasma photonic crystal are studied based on modified plane wave method. Firstly, the eigenvalue equations of TM mode of type-1 and type-2 structures are derived respectively; their dispersion curves are confirmed by the software simulation. Secondly, the influences of normalized plasma frequency, filling factor and relative dielectric constant on photonic band gap, and relative photonic band gap width are analyzed respectively, and some corresponding physical explanations are also given. These results would provide theoretical instructions for designing new photonic crystal devices using plasmadielectric structure.

Citation:
L.-M. Qi and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605
http://www.jpier.org/pier/pier.php?paper=09022605

References:
1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physis and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Banaei, H. A. and A. Rostami, "A novel proposed for passive all-optical demultiplexer for DWMD systems using 2-D photonic crystals," J. of Electromagn. Waves and Appl., Vol. 22, 471-482, 2008.
doi:10.1163/156939308784150263

4. Manolatou, C., S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol., Vol. 17, 1682-1692, 1999.
doi:10.1109/50.788575

5. Minin, I.V., O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

6. Mizuguchi, J., Y. Tanaka, S. Tamura, and M. Notomi, "Focusing of light in a three-dimensional cubic photonic crystal," Phys. Rev. B, Vol. 67, 075109-075117, 2003.
doi:10.1103/PhysRevB.67.075109

7. Chen, J. Y., J. Y. Yeh, L. W. Chen, Y. G. Li, and C. C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals ," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704

8. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," J. Plasma Fusion Research, Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89

9. Liu, S., W. Hong, and N. Yuan, "Finite-difference time-domain analysis of unmagnetized plasma photonic crystals," International Journal of Infrared and Millimeter Waves, Vol. 27, No. 3, 403-422, 2006.
doi:10.1007/s10762-006-9075-x

10. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, No. 24, 241505-1-3, 2005.
doi:10.1063/1.2147709

11. Sakai, O. and K. Tachibana, "Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structures," IEEE Transactions on Plasma Science, Vol. 35, No. 5, 1267-1273, 2007.
doi:10.1109/TPS.2007.906133

12. Tachibana, K., Y. Kishimoto, S. Kawai, T. Sakaguchi, and O. Sakai, "Diagnostics of microdischarge-integrated plasma sources for display and material processing," Plasma Phys. Contr. Fusion, Vol. 47, A167-A177, 2005.
doi:10.1088/0741-3335/47/5A/012

13. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves," J. Appl. Phys., Vol. 101, No. 7, 073304-1-9, 2007.
doi:10.1063/1.2713939

14. Sakaguchi, T., O. Sakai, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges," J. Appl. Phys., Vol. 101, No. 7, 073305-1-7, 2007.
doi:10.1063/1.2713940

15. Hojo, H., N. Uchida, and A. Mase, "Beaming of millimeter waves from plasma photonic crystal waveguides," Plasma and Fusion Research: Rapid Communications, Vol. 1, 2006.

16. Villa-Villa, F., J. A. Gaspar-Armenta, and A. Mendoza-Suarez, "surface modes in one dimensional photonic crystals that include left handed materials," J. of Electromagn. Waves and Appl., Vol. 21, No. 4, 485-499, 2007.
doi:10.1163/156939307779367323

17. Kuzmiak, V., A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic componets," Phys. Rev. B, Vol. 50, No. 23, 16835-16844, 1994.
doi:10.1103/PhysRevB.50.16835

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain, 2nd edition, Artech House, Boston, 2000.

19. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, No. 15, 155120-1-10, 2002.
doi:10.1103/PhysRevB.65.155120

20. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omnidirection reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

21. Dubey, R. S. and D. K. Gautam, "Development of simulation tools to study optical properties of one-dimentional photonic crystals," J. of Electromagn. Waves and Appl., Vol. 22, 849-860, 2008.
doi:10.1163/156939308784159408

22. Kretschmann, M., "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B, Vol. 68, No. 12, 125419-1-5, 2003.
doi:10.1103/PhysRevB.68.125419

23., Handbook for CST Microwave Studio V5.1, 2006.

24. Sakurai, J., Modern Quantum Mechanics,, Addison-Wesley, New York, 1994.

25. Meade, R. D., A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Nature of the photonic band gap: Some insights from a field analysis," J. Opt. Soc. Am. B., Vol. 10, 328-332, 1993.
doi:10.1364/JOSAB.10.000328

26. Joannopoulos, J. D., S. G. Johnson, J. N.Winn, and R. D. Meade, Photonic Crystals-Molding the Flow of Light, Princeton University Press, Princeton, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved