PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 93 > pp. 57-70

A BREAST IMAGING MODEL USING MICROWAVES AND A TIME DOMAIN THREE DIMENSIONAL RECONSTRUCTION METHOD

By H. Zhou, T. Takenaka, J. E. Johnson, and T. Tanaka

Full Article PDF (830 KB)

Abstract:
An iterative reconstruction algorithm for three-dimensional (3-D) microwave tomography by using time-domain microwave data is applied to detect breast tumor. A numeric breast model with randomly distributed glandular tissues (random size and permittivity) with a tumor is designed for the calculation of synthetic microwave data. An "air phantom" consisting of a section of polyvinyl chloride (PVC) pipe filled with styrofoam and a thin glass cylinder is constructed for collecting microwave data in laboratory. The "breast" and "air phantom" are reconstructed. Reconstruction results show that the "tumor" in the breast is clearly reconstructed, and the glass cylinder is successfully reconstructed too.

Citation:
H. Zhou, T. Takenaka, J. E. Johnson, and T. Tanaka, " a breast imaging model using microwaves and a time domain three dimensional reconstruction method ," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001
http://www.jpier.org/PIER/pier.php?paper=09033001

References:
1. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

2. Guo, B., Y. Wang, J. Li, and P. Stoica, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

3. Takenaka, T., H. Zhou, and T. Tanaka, "Inverse scattering for a three-dimensional object in the time domain," J. Opt. Soc. Am. A, Vol. 20, No. 10, 1867-1874, 2003.
doi:10.1364/JOSAA.20.001867

4. Fear, E., J. Sill, and M. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

5. Li, D., P. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. Paulsen, "Parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, No. 7, 2305-2313, 2004.
doi:10.1063/1.1764609

6. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008.

7. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

8. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

9. Meaney, P., et al., "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

10. Poplack, S., et al., "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, No. 2, 350-359, 2007.
doi:10.1148/radiol.2432060286

11. Sill, J. and E. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

12. Bond, E., X. Li, S. Hagness, and B. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., Vol. 51, No. 8, 1690-1705.
doi:10.1109/TAP.2003.815446

13. Li, X., S. Davis, S. Hagness, D. D. Van Weide, and B. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

14. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

15. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

16. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

17. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

18. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

19. Van Dongen Koen, W. A. and W. M. D. Wright, "A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles," The Journal of the Acoustical Society of America, Vol. 121, 1538-1549, 2007.
doi:10.1121/1.2431333

20. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects," IEEE Trans. Antennas and Propagat., Vol. 42, No. 5, 581-589, 1994.
doi:10.1109/8.299556

21. Lin, J. H. and W. C. Chew, "Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods," J. Opt. Soc. Am. A, Vol. 14, No. 11, 3037-3045, 1997.
doi:10.1364/JOSAA.14.003037

22. Semenov, S. Y., et al., "Three-dimensional microwave tomography: Experimental prototype of the system and vector Born reconstruction method," IEEE Transactions on Biomedical Engineering, Vol. 46, No. 8, 937-946, 1999.
doi:10.1109/10.775403

23. Abubakar, A., P. M. D. Van Berg, and B. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Trans. Electron., Vol. E83-C, 1864-1874, 2000.

24. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagat., Vol. 14, 302-307, 1966.

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, Norwood, MA, 2005.

26. Meaney, P., Q. Fang, and K. Paulsen, "Data collection strategies and their impact on 3-D microwave imaging of the breast," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 183-186, 2005.

27. Winters, D. W., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas and Propagat., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296

28. Williams, T., E. Fear, and D. Westwick, "Tissue sensing adaptive radar for breast cancer detection- investigations of an improved skin-sensing method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1308-1314, 2006.
doi:10.1109/TMTT.2006.871224

29. Winters, D., J. Shea, E. Madsen, G. Frank, B. Van Veen, and S. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028


© Copyright 2014 EMW Publishing. All Rights Reserved