PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 93 > pp. 145-160

SYNTHESIS OF PLANAR ARRAYS USING A MODIFIED PARTICLE SWARM OPTIMIZATION ALGORITHM BY INTRODUCING A SELECTION OPERATOR AND ELITISM

By M. Lanza Diego, J. R. Perez Lopez, and J. Basterrechea

Full Article PDF (562 KB)

Abstract:
A modified particle swarm optimization (PSO) algorithm applied to planar array synthesis considering complex weights and directive element patterns is presented in this paper. The modern heuristic classical PSO scheme with asynchronous updates of the swarm and a global topology has been modified by introducing tournament selection, one of the most effective selection strategies performing in genetic algorithms the equivalent role to natural selection, and elitism. The modified PSO proposed combines the abilities of the classical PSO to explore the search space and the pressure exerted by the selection operator to speed up convergence. Regarding the optimization problem, the synthesis of the feeds for rectangular planar arrays consisting of microstrip patches or subarrays of microstrip patches is considered. Results comparing the performance and limitations of classical and modified PSO-based schemes are included considering both test functions and planar array complex synthesis to best meet certain far-field radiation pattern restrictions given in terms of 3D-masks. Finally, representative synthesis results for sector antennas for worldwide interoperability for microwave access (WiMAX) applications are also included and discussed.

Citation:
M. Lanza Diego, J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303
http://www.jpier.org/PIER/pier.php?paper=09041303

References:
1. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

2. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, New York, 1999.

3. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

4. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Trans. Antennas Propagat., Vol. 52, No. 4, 1007-1014, 2004.
doi:10.1109/TAP.2004.825658

5. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.2528/PIERB07102501

6. Lee, K. C., C. W. Huang, and Y. H. Chen, "Analysis of nonlinear microwave circuits by particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1353-1365, 2007.
doi:10.1163/156939307783239474

7. Li, J. F., B. H. Sun, Q. Z. Liu, and L. Gong, "PSO-based fast optimization algorithm for broadband array antenna by using the cubic spline interpolation," Progress In Electromagnetics Research Letters, Vol. 4, 173-181, 2008.
doi:10.2528/PIERL08100407

8. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansa, and S. H. Zainud-Deen, "Performance of circular Yagi-Uda arrays for beamforming applications using particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 353-364, 2008.
doi:10.1163/156939308784160866

9. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite di®erence frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

10. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

11. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

12. Liu, X. F., Y. B. Chen, Y. C. Jiao, and F. S. Zhang, "Modified particle swarm optimization for patch antenna design based on IE3D," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1819-1828, 2007.

13. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

14. Li, W.-T., X.-W. Shi, L. Xu, and Y.-Q. Hei, "Improved ga and pso culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503

15. Grimaccia, F., M. Mussetta, and R. E. Zich, "Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 781-785, 2007.
doi:10.1109/TAP.2007.891561

16. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102

17. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multiobjective implementation," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

18. Perez, J. R. and J. Basterrechea, "Particle swarms applied to array synthesis and planar near-field antenna measurement," Microwave Opt. Technol. Lett., Vol. 50, No. 2, 544-548, 2008.
doi:10.1002/mop.23089

19. Perez, J. R. and J. Basterrechea, "Particle swarm optimization with tournament selection for linear array synthesis," Microwave Opt. Technol. Lett., Vol. 50, No. 3, 627-632, 2008.
doi:10.1002/mop.23148

20. Balanis, C. A., Antenna Theory, John Wiley & Sons, New Jersey, 2005.

21. Ludwig, A. C., "The definition of cross polarization," IEEE Trans. Antennas Propagat., Vol. 21, No. 1, 116-119, 1973.
doi:10.1109/TAP.1973.1140406

22. Perez, J. R. and J. Basterrechea, "Particle-swarm optimization and its application to antenna far-field-pattern prediction from planar scanning," Microwave Opt. Technol. Lett., Vol. 44, No. 5, 398-403, 2005.
doi:10.1002/mop.20648

23. Pérez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

24. Clerc, M. and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space," IEEE Trans. Evolutionary Comp., Vol. 6, No. 1, 58-73, 2002.
doi:10.1109/4235.985692

25. Isernia, T., P. D. Iorio, and F. Soldovieri, "An effective approach for the optimal focusing of array fields subject to upper bounds," IEEE Trans. Antennas Propagat., Vol. 48, No. 12, 1837-1847, 2000.
doi:10.1109/8.901272

26. ETSI EN 302 085 v1.2.3, "Fixed radio systems; point-to-multipoint antennas; antennas for point-to-multipoint fixed radio systems in the 3 GHz to 11 GHz band," European Standard (Telecommunications Series), 2005.

27. Isernia, T., O. M. Bucci, and N. Fiorentino, "Shaped beam antenna synthesis problems: Feasibility criteria and new strategies," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 103-138, 1998.
doi:10.1163/156939398X00098


© Copyright 2014 EMW Publishing. All Rights Reserved