PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 92 > pp. 347-360

SYNTHESIS OF PHASED ARRAYS IN COMPLEX ENVIRONMENTS WITH THE MULTILEVEL CHARACTERISTIC BASIS FUNCTION METHOD

By J. Laviada-Martinez, R. G. Ayestaran, M. R. Pino, F. Las Heras Andres, and R. Mittra

Full Article PDF (777 KB)

Abstract:
The aim of this paper is to present a method to carry out the synthesis of large phased arrays when they are affected by complex environments which can influence the radiation pattern. The synthesis is performed with the help of the Multilevel Characteristic Basis Function Method to calculate a matrix relating input voltages and the far field pattern samples. The method is illustrated with the synthesis of a Secondary Surveillance Radar antenna on a turret containing multiple obstacles.

Citation:
J. Laviada-Martinez, R. G. Ayestaran, M. R. Pino, F. Las Heras Andres, and R. Mittra, " synthesis of phased arrays in complex environments with the multilevel characteristic basis function method ," Progress In Electromagnetics Research, Vol. 92, 347-360, 2009.
doi:10.2528/PIER09041801
http://www.jpier.org/PIER/pier.php?paper=09041801

References:
1. Liu, Z. F., P. S. Kooi, L. W. Li, M. S. Leong, and T. S. Yeo, "A method of moments analysis of a microstrip phased array in three layered structures," Progress In Electromagnetic Research, PIER 31, 155-179, 2001.

2. Yuan, T., L. W. Li, and M. S. Leong, "Efficient analysis and design of finite phased arrays of printed dipoles using fast algorithm: Some case studies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 737-754, 2007.
doi:10.1163/156939307780749057

3. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602

4. Ares, F. M., J. A. Rodrıguez, E. Villanueva, and S. R. Rengajaran, "Genetic algorithms in the design and optimization of antenna array pattern," IEEE Trans. Antennas Propagat., Vol. 47, 506-510, 1999.
doi:10.1109/8.768786

5. Landesa, L., F. Obelleiro, J. L. Rodriguez, and A. G. Pino, "Pattern synthesis of array antennas in presence of conducting bodies of arbitrary shape," Electronics Letters, Vol. 33, 1512-1513, 1997.
doi:10.1049/el:19971014

6. Ayestaran, R. G., F. Las-Heras, and L. F. Herran, "Neural modeling of mutual coupling for antenna array synthesis," IEEE Trans. Antennas Propagat., Vol. 55, 832-840, 2007.
doi:10.1109/TAP.2007.891810

7. Ayestaran, R. G., M. F. Campillo, and F. Las-Heras, "Multiple support vector regression for antenna array characterization and synthesis," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2495-2501, 2007.
doi:10.1109/TAP.2007.904077

8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Antennas Propagat. Mag., Vol. 53, 7-12, 1993.
doi:10.1109/74.250128

9. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
doi:10.1029/96RS02504

10. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parron, and E. Ubeda, "Fast direct solution of method of moments linear system," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 3220-3228, 2007.
doi:10.1109/TAP.2007.908804

11. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2306-2313, 2008.
doi:10.1109/TAP.2008.926739

12. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Opt. Technol. Lett., Vol. 36, 95-100, 2003.
doi:10.1002/mop.10685

13. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

14. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 56, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

15. Delgado, C., M. F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, 784-791, 2008.
doi:10.1109/TAP.2008.916935

16. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Generation of nested characteristic basis functions," Proc. of European Conference on Antennas and Propagation (EuCAP 2009), Berlin, Germany, Mar. 23-27, 2009.

17. Las-Heras, F., B. Galocha, and J. L. Besada, "Equivalent source modelling and reconstruction for antenna measurement and synthesis," Proc. IEEE AP-S International Symposium, Montreal, Vol. 1, 156-159, Canada, July 13-18, 1997.

18. Van Tonder, J. and U. Jakobus, "Fast multipole solution Fast multipole solution," Proc. 21st Annual Review of Progress in Applied Computational Electromagnetics, ACES, Hawaii, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved