Vol. 93
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-06-13
X-Band Miniaturized Wideband Bandpass Filter Utilizing Multilayered Microstrip Hairpin Resonator
By
Progress In Electromagnetics Research, Vol. 93, 177-188, 2009
Abstract
This paper presents a new design of miniaturized wideband bandpass filter using microstrip hairpin in multilayer configuration for X-band application. The strong coupling required for wideband filter is realized by arranging five hairpin resonators in two layers on different dielectric substrates. Since adjacent resonator lines are placed at different levels, there are two possible ways to change coupling strength by varying the overlapping gap between two resonators; vertically and horizontally. In this paper, simulated and measured result for a wideband filter of 4.4 GHz bandwidth at 10.2 GHz center frequency with fifth order Chebyshev response is proposed. The filter is fabricated on 0.254 mm thickness R/T Duroid 6010 and R/T Duroid 5880 with dielectric constant 10.2 and 2.2 respectively using standard photolithography technique. Two filter configurations based on vertical (Type 1) and horizontal (Type 2) coupling variation to optimize the coupling strength are presented and compared. Both configurations produce very small and compact filter size, at 5.0 x 14.6 mm2 and 3.2 x 16.1 mm2 for the first and second proposed filter type respectively. The measured passband insertion losses for both filters are less than 2.3 dB and the passband return loss is better than -16 dB for filter Type 1 and -13 dB for filter Type 2. Very small and compact filter is achieved where measured results show good agreement with the simulated responses.
Citation
Helmi Adam, Alyani Ismail, Mohd Adzir Mahdi, Mohammad Shahrazel Razalli, Adam Reda Hasan Alhawari, and Babak Kazemi Esfeh, "X-Band Miniaturized Wideband Bandpass Filter Utilizing Multilayered Microstrip Hairpin Resonator," Progress In Electromagnetics Research, Vol. 93, 177-188, 2009.
doi:10.2528/PIER09042202
References

1. Sagawa, M., K. Takahasi, and M. Makimoto, "Miniaturized hairpin resonator filters and their application to receiver front-end MIC's," IEEE Trans. Microwave Theory Tech., Vol. 37, No. 10, 1991-1997, 1989.
doi:10.1109/22.44113

2. Hong, J. S. and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator filters," IEEE Trans. Microwave Theory Tech., Vol. 46, 118-122, Jan. 1998.
doi:10.1109/22.654931

3. Yoon, H. K., Y. J. Yoonjoo, H. Park, and S. Ye, "Hairpin line half wave parallel coupled line narrowband band pass filters using high temperature superconducting thin films," IEEE Trans. Applied Superconductivity, Vol. 9, 3901-3904, Jun. 1999.
doi:10.1109/77.783880

4. Kikkert, C. J., "Designing low cost wideband microstrip bandpass filters," Tencon 2005 IEEE Region 10, 1-6, Nov. 2005.

5. Fan, J. W., C. H. Liang, and X. W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

6. Wang, Y. X., B. Z. Wang, and J. P. Wang, "A compact square loop dual-mode bandpass filter with wide stop-band," Progress In Electromagnetics Research, Vol. 77, 67-73, 2007.
doi:10.2528/PIER07072707

7. Zhao, L. P., X. Zhai, B. Wu, T. Su, W. Xue, and C. H. Liang, "Novel design of dual-mode bandpass filter using rectangle structure," Progress In Electromagnetics Research B, Vol. 3, 131-141, 2008.
doi:10.2528/PIERB07121003

8. Lin, W. J., C. S. Chang, J. Y. Li, D. B. Lin, L. S. Chen, and M. P. Houng, "Improved compact broadband bandpass filter using branch stubs co-via structure with wide stopband characteristic," Progress In Electromagnetics Research C, Vol. 5, 45-55, 2008.

9. Lai, X., Q. Li, P. Y. Qin, B. Wu, and C. H. Liang, "A novel wideband bandpass filter based on complementary split-ring resonator," Progress In Electromagnetics Research C, Vol. 1, 177-184, 2008.
doi:10.2528/PIERC08013104

10. Zhang, J., J. Z. Gu, B. Cui, and X. W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with tri-section sir," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

11. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

12. Boutejdar, A., A. Elsherbini, A. Balalem, J. Machac, and A. Omar, "Design of new DGS hairpin microstrip bandpass filter using coupling matrix method," PIERS Proceedings, 261-265, Prague, Czech Republic, August 27--30, 2007.

13. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.2528/PIER08102303

14. Shobeyri, M. and M. H. Vadjed-Samiei, "Compact ultra-wideband bandpass filter with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 4, 25-31, 2008.
doi:10.2528/PIERL08050205

15. Wei, F., L. Chen, X.-W. Shi, X. H. Wang, and Q. Huang, "Compact UWB bandpass filter with notched band ," Progress In Electromagnetics Research C, Vol. 4, 121-128, 2008.

16. Cohn, S. B., "Parallel-coupled transmission-line-resonator filters," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 4, 223-231, April 1958.

17. Hasan, A. and A. E. Nadeem, "Novel microstrip hairpinline narrowband bandpass filter using via ground holes," Progress In Electromagnetics Research, Vol. 78, 393-419, 2008.
doi:10.2528/PIER07091401

18. Mu, Y., Z. Ma, and D. Xu, "Multilayered stripline interdigital-hairpin bandpass filters with small-size and improved stop-band characteristics," Asia-Pacific Microwave Conference 2005, Suzhou, China, Dec. 2005.

19. Djaiz, A. and T. A. Denidni, "Investigation of a compact aperture-coupled multilayer bandpass filter for wireless systems," Radio and Wireless Conference, 2004 IEEE, Sept. 2004.

20. Schwab, W. and W. Menzel, "Compact bandpass filters with improved stop-band characteristics using planar multilayer structures," IEEE MTT-S, Digest, 1207-1210, 1992.
doi:10.1109/MWSYM.1992.188215

21. Chang, H. C., C. C. Yeh, W. C. Ku, and K. C. Tao, "A multilayer bandpass filter integrated into RF module board," IEEE MTT-S, Digest, 619-622, 1996.

22. Cho, C. and K. C. Gupta, "Design methodology for multilayer coupled line filters," IEEE MTT-S, Digest, 785-788, 1997.

23. Cho, C. and K. C. Gupta, "Design of end-coupled band-pass filters in multilayer microstrip configurations," IEEE MTT-S, Digest, 711-714, 1999.

24. Matsanaga, M., M. Katayama, and K. Yasumoto, "Coupled mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetic Research, Vol. 24, 1-17, 1999.
doi:10.2528/PIER99032902

25. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619.ch1

26. Matheai, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, 1980.

27., CST Microwave Studio Version 2006B.