Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-05-28

Experimental Demonstration of Metamaterial-Based Phase Modulation

By Iftekhar Mirza, Jerico N. Sabas, Shouyuan Shi, and Dennis W. Prather
Progress In Electromagnetics Research, Vol. 93, 1-12, 2009
doi:10.2528/PIER09050412

Abstract

Phase modulation is critical due to its applicability in varied RF devices such as phased array antennas, radars to name a few. In this paper, we report experimental data on phase modulation in the X-band frequency using tunable metamaterials such as a planar design of stacked dual split ring resonators (DSRRs) of 3mm thickness at 8.5 GHz. Modulation was brought about by switching between the open and closed states of the rings causing a net change in the effective refractive index and thereby producing a phase variation. One and two dimensional free-space scanning experiments were carried out where a phase modulation of 62 degrees was demonstrated. The measured data matched well with the numerically simulated results.

Citation


Iftekhar Mirza, Jerico N. Sabas, Shouyuan Shi, and Dennis W. Prather, "Experimental Demonstration of Metamaterial-Based Phase Modulation," Progress In Electromagnetics Research, Vol. 93, 1-12, 2009.
doi:10.2528/PIER09050412
http://www.jpier.org/PIER/pier.php?paper=09050412

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Uspekhi , Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    3. Lu, Z., J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett., Vol. 95, 153901(4, 2005.

    4. Sheng, Z. and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys., Vol. 101, 014909-1, 2007.
    doi:10.1063/1.2407275

    5. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, 1990.
    doi:10.1109/19.52520

    6. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different splitring resonator parameters and designs," New J. Phys., Vol. 7, 168, 2005.
    doi:10.1088/1367-2630/7/1/168

    7. Aydin, K., K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express, Vol. 12, 5896, 2004.
    doi:10.1364/OPEX.12.005896

    8. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett., Vol. 91, 037401, 2003.
    doi:10.1103/PhysRevLett.91.037401

    9. Chen, H. T., W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597-600, 2006.
    doi:10.1038/nature05343

    10. Logeeswaran, V. J., A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A, Vol. 87, 209-216, 2007.
    doi:10.1007/s00339-007-3897-9

    11. Reynet, O. and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett., Vol. 84, 1198, 2004.
    doi:10.1063/1.1646731

    12. He, P., P. Parimi, and C. Vittoria, "Tunable negative refractive index metamaterial phase shifter," Elec. Lett., Vol. 43, 2007.
    doi:10.1049/el:20072441

    13. Velez, A. and J. Bonache, "Varactor-loaded complementary split ring resonators VLCSRR and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett., Vol. 18, 28-30, 2008.
    doi:10.1109/LMWC.2007.911983

    14. Smith, D., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-1, 2002.
    doi:10.1103/PhysRevB.65.195104

    15. Chen, H. T., J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, "Experimental demonstration Experimental demonstration," Nature Photonics, Vol. 2, 295-298, 2008.
    doi:10.1038/nphoton.2008.52

    16. Karkkainen, M. K. and P. Ikonen, "Patch antenna with stacked Patch antenna with stacked," Microwave Opt. Technol. Lett., Vol. 46, 554-556, 2005.
    doi:10.1002/mop.21048

    17. Oh, S. and L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol. Lett., Vol. 48, 329-334, 2006.
    doi:10.1002/mop.21341

    18. Maslovski, S., P. Ikonen, I. kolmakov, and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: Metalsolenoid," Progress In Electromagnetics Research, PIER 54, 61-81, 2005.

    19. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
    doi:10.1063/1.1695439

    20. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    21. Kafesaki, M., T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, "Left-handed metamaterials: Detailed numerical studies of the transmission properties," J. Opt. A: Pure and Appl. Opt., Vol. 7, S12-S22, 2005.
    doi:10.1088/1464-4258/7/2/002

    22. Dudley, D., W. Duncan, and J. Slaughter, "Emerging digital micromirror device DMD applications," Proc. SPIE, Vol., Vol. 4985 , 14-25, 2003.
    doi:10.1117/12.480761

    23. Aydin, K. and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys., Vol. 101, 024911-5, 2007.
    doi:10.1063/1.2427110

    24. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, 2008.
    doi:10.1038/nmat2072

    25. Balanis, C., Antenna Theory, Chap. 6, 3rd edition, John Wiley & Sons, 2005.

    26. Hand, T. and S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett., to be published.

    27. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Micro. Theo. Tech., Vol. 53, 161-173, 2005.
    doi:10.1109/TMTT.2004.839927

    28. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
    doi:10.1038/nphoton.2009.3

    29. Mirza, I. O., S. Shi, and D. W. Prather, "Phase modulation using dual split ring resonators," Opt. Express, Vol. 17, 5089-5097, 2009.
    doi:10.1364/OE.17.005089