PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 94 > pp. 19-32

A TRUST REGION SUBPROBLEM FOR 3D ELECTRICAL IMPEDANCE TOMOGRAPHY INVERSE PROBLEM USING EXPERIMENTAL DATA

By M. Goharian, M. Soleimani, and G. R. Moran

Full Article PDF (1,071 KB)

Abstract:
Image reconstruction in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. Regularization methods are needed to solve this problem. The results of the ill-posed EIT problem strongly depends on noise level in measured data as well as regularization parameter. In this paper we present trust region subproblem (TRS), with the use of Lcurve maximum curvature criteria to find a regularization parameter. Currently Krylov subspace methods especially conjugate gradient least squares (CGLS) are used for large scale 3D problem. CGLS is an efficient technique when the norm of measured noise is exactly known. This paper demonstrates that CGLS and TRS converge to the same point on the L-curve with the same noise level. TRS can be implemented efficiently for large scale inverse EIT problem as CGLS with no need a priori knowledge of the noise level.

Citation:
M. Goharian, M. Soleimani, and G. R. Moran, "A Trust Region Subproblem for 3D Electrical Impedance Tomography Inverse Problem Using Experimental Data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003
http://www.jpier.org/PIER/pier.php?paper=09052003

References:
1. Eldén, L., "Algorithms for the regularization of ill-conditioned least squares problems," BIT, Vol. 17, 134-145, 1977.
doi:10.1007/BF01932285

2. Björck, A., "Numerical methods for least squares problems," SIAM, Philadelphia, 1996.

3. Rojas, M., "A large-scale trust-region approach to the regularization of discrete ill-posed problems,", Ph.D. Thesis, Technical Report TR98-19, Department of Computational and Applied Mathematics, Rice University, Houston, 1998.

4. Grodzevich, O., "Regularization using a parameterized Trust-Region subproblem,", M.Sc. Thesis, Department of Combinatorics and Optimization, University of Waterloo, Canada, 2004.

5. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Rev., Vol. 34, No. 2, 561-580, 1992.
doi:10.1137/1034115

6. Sorensen, D. C., "Minimization of a large-scale quadratic function subject to a spherical constraint," SIAM Journal on Optimization, Vol. 7, No. 1, 141-161, 1997.
doi:10.1137/S1052623494274374

7. Stern, R. J. and W. Hlkowicz, "Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations," SIAM Journal on Optimization, Vol. 5, No. 2, 286-313, 1995.
doi:10.1137/0805016

8. Boone, K., D. Barber, and B. Brown, "Imaging with electricity: Report of the european concerted action on impedance tomography," Journal of Medical Engineering & Technology, Vol. 21, No. 4, 201-232, 1997.

9. Metherall, P., D. C. Barber, R. H. Smallwood, and B. H. Brown, "Three-dimensional electrical impedance tomography," Nature, Vol. 380, No. 6574, 509-512, 1996.
doi:10.1038/380509a0

10. Vauhkonen, M., "Electrical impedance tomography and prior information,", Thesis, Univeristy of Kuopio, 1997.

11. Goharian, M., G. R. Moran, K. Wilson, C. Seymour, A. Jegatheesan, M. Hill, R. T. Thompson, and G. Campbe, "Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation," Nucl. Instr. and Meth. B, 2007.

12. Mori, Y., H. Tokura, and M. Yoshikawa, "Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications," Journal of Materials Science, Vol. 32, No. 2, 491-496, 1997.
doi:10.1023/A:1018586307534

13. Surry, K. J. M., H. J. B. Austin, A. Fenster, and T. M. Peters, "Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging," Physics in Medicine and Biology, Vol. 49, No. 24, 5529-5546, 2004.
doi:10.1088/0031-9155/49/24/009

14. Goharian, M., A. Jegatheesan, and G. R. Moran, "Dogleg trustregion application in electrical impedance tomography," Physiol. Meas., Vol. 28, 555-572, 2007.
doi:10.1088/0967-3334/28/5/009

15. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

16. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 785-798, 2009.
doi:10.1163/156939309788019822

17. Zacharopoulos, A. and S. Arridge, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1827-1836, 2006.
doi:10.1163/156939306779292165

18. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

19. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1565-1574, 2008.
doi:10.1163/156939308786390021

20. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Electromagnetic analysis of a non invasive microwave radiometry imaging system emphasizing on the focusing sensitivity optimization," Progress In Electromagnetics Research, Vol. 90, 385-407, 2009.
doi:10.2528/PIER09010803

21. Polydorides, N., "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009.
doi:10.2528/PIER09052503


© Copyright 2014 EMW Publishing. All Rights Reserved