PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 93 > pp. 323-337

LINEARIZATION ERROR IN ELECTRICAL IMPEDANCE TOMOGRAPHY

By N. Polydorides

Full Article PDF (389 KB)

Abstract:
In electromagnetic tomography and resistivity survey a linearized model approximation is often used, in the context of regularized regression, to image the conductivity distribution in a domain of interest. Due to the error introduced by the simplified model, quantitative image reconstruction becomes challenging unless the conductivity is sufficiently close to a constant. We derive a closed form expression of the linearization error in electrical impedance tomography based on the complete electrode model. The error term is expressed in an integral form involving the gradient of the perturbed electric potential and renders itself readily available for analytical or numerical computation. For real isotropic conductivity changes with piecewise uniform characteristic functions the perturbed potential field can be shown to satisfy Poisson's equation with Robin boundary conditions and interior point sources positioned at the interfaces of the inhomogeneities. Simulation experiments using a finite element method have been performed to validate these results.

Citation:
N. Polydorides, "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009.
doi:10.2528/PIER09052503
http://www.jpier.org/PIER/pier.php?paper=09052503

References:
1. Assenheimer, M., O. Laver-Moskovitz, D. Malonek, D. Manor, U. Nahaliel, R. Nitzan, and A. Saad, "The T-SCAN technology: Electrical impedance as a diagnostic tool for breast cancer detection," Physiological Measurement, Vol. 22, 18, 2001.
doi:10.1088/0967-3334/22/1/301

2. Borcea, L., "Electrical impedance tomography: Topical review," Inverse Problems, Vol. 18, No. 6, 99-136, 2002.
doi:10.1088/0266-5611/18/6/201

3. Breckon, W. R., Image reconstruction in electrical impedance tomography, PhD thesis, Oxford Polytechnic, 1990. On-line copy at http://www.maths.manchester.ac.uk/~bl..

4. Calderon, A. P., "On an inverse boundary value problem," Computational and Applied Mathematics, Vol. 25, No. 2-3, 133-138, 2006 (Reprint of original paper).

5. Holder, D. H., Electrical Impedance Tomography: Methods, History and Applications, Institute of Physics, Bristol, 2002.

6. Kaipio, J. and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2004.

7. Paulson, K. S., W. R. Breckon, and M. K. Pidcock, "Electrode modelling in electrical impedance tomography," SIAM Journal of Applied Mathematics, Vol. 52, 1012-1022, 1992.
doi:10.1137/0152059

8. Pidcock, M. K., M. Kuzuoglu, and K. Leblebicioglu, "Analytic and semi-analytic solutions in electrical impedance tomography. II. Three-dimensional problems," Physiological Measurement, Vol. 16, 91-110, 1995.
doi:10.1088/0967-3334/16/2/002

9. Polydorides, N. and W. R. B. Lionheart, "A MATLAB based toolkit for three-dimensional electrical impedance tomography: A contribution to the EIDORS project," Measurement Science and Technology, Vol. 13, No. 12, 1871-1883, 2002.
doi:10.1088/0957-0233/13/12/310

10. Seo, J. K., O. Kwon, H. Ammari, and E. J.Woo, "A mathematical model for breast cancer lesion estimation: Electrical impedance technique using TS2000 commercial system," IEEE Transactions on Biomedical Engineering, Vol. 51, No. 11, 1898-1906, 2004.
doi:10.1109/TBME.2004.834261

11. Silvester, J. and G. Uhlmann, "A global uniqueness theorem for an inverse boundary valued problem," Annals of Mathematics, Vol. 125, 153-169, 1987.
doi:10.2307/1971291

12. Somersalo, E., M. Cheney, and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography," SIAM Journal on Applied Mathematics, Vol. 52, No. 4, 1023-1040, 1992.
doi:10.1137/0152060

13. Vauhkonen, M., W. R. B. Lionheart, L. M. Heikkinen, P. J. Vauhkonen, and J. P. Kaipio, "A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images," Physiological Measurement, Vol. 22, 107-111, 2001.
doi:10.1088/0967-3334/22/1/314

14. Yorkey, T. J., Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of Wisconsin, Madison, 1986.

15. Brandstatter, B., "Jacobian calculation for electrical impedance tomography based on the reciprocity principle," IEEE Transactions on Magnetics, Vol. 39, No. 3, 1309-1312, 2003.
doi:10.1109/TMAG.2003.810390

16. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202


© Copyright 2014 EMW Publishing. All Rights Reserved