Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-08-12

Wave and Ray Analysis of a Type of Cloak Exhibiting Magnified and Shifted Scattering Effect

By Yu Luo, Jingjing Zhang, Hongsheng Chen, Bae-Ian Wu, and Li-Xin Ran
Progress In Electromagnetics Research, Vol. 95, 167-178, 2009
doi:10.2528/PIER09070805

Abstract

Ray-tracing exercise and full-wave analysis were performed to validate the performance of a type of cloak composed of isotropic metamaterials. It is shown that objects inside the 'folded region' of this cloak appear invisible to the incoming light from a ray tracing exercise, but exhibit magnified and shifted scattering under a plane wave illumination from a full wave analysis. Gaussian beams are introduced to resolve this interesting paradox resulted from these two methods. We show that at the time-harmonic state, small energy can be diffracted into the folded region and contribute to the resonant state even when the Gaussian beam is steered away from the cloak with an object inside. A scattering pattern identical to that scattered from the image of the object will be formed, which agrees well with the phenomenon in the plane wave incidence case.

Citation


Yu Luo, Jingjing Zhang, Hongsheng Chen, Bae-Ian Wu, and Li-Xin Ran, "Wave and Ray Analysis of a Type of Cloak Exhibiting Magnified and Shifted Scattering Effect," Progress In Electromagnetics Research, Vol. 95, 167-178, 2009.
doi:10.2528/PIER09070805
http://www.jpier.org/PIER/pier.php?paper=09070805

References


    1. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
    doi:10.1103/PhysRevE.72.016623

    2. Alù, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Phys. Rev. Lett., Vol. 100, 113901, 2008.
    doi:10.1103/PhysRevLett.100.113901

    3. Milton, G. W. and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, 3027-3059, 2006.
    doi:10.1098/rspa.2006.1715

    4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    5. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
    doi:10.1126/science.1126493

    6. Greenleaf, A., M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas., Vol. 24, 413-419, 2003.
    doi:10.1088/0967-3334/24/2/353

    7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Scienc, Vol. 314, 977-980, 2006.

    8. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
    doi:10.1103/PhysRevE.74.036621

    9. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express, Vol. 15, 12717-12734, 2007.
    doi:10.1364/OE.15.012717

    10. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with metamaterial cloak," Phys. Rev. Letts., Vol. 99, 063903, 2007.
    doi:10.1103/PhysRevLett.99.063903

    11. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photon., Vol. 1, 224-227, 2007.
    doi:10.1088/1751-8113/41/6/065207

    12. Weder, R., "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor., Vol. 41, 065207, 2008.
    doi:10.1103/PhysRevB.77.035116

    13. Zhang, J., J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B.-I. Wu, "Cloak for multilayered and gradually changing media," Phys. Rev. B, Vol. 77, 035116, 2008.
    doi:10.1103/PhysRevB.77.125127

    14. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.
    doi:10.2528/PIER08011002

    15. Zhang, J. J., Y. Luo, S. Xi, H. Chen, L.-X.Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress In Electromagnetics Research, Vol. 81, 437-446, 2008.
    doi:10.2528/PIER08071301

    16. Zhang, J. J., Y. Luo, H. Chen, and B.-I. Wu, "Sensitivity of transformation cloak in engineering," Progress In Electromagnetics Research, Vol. 84, 93-104, 2008.
    doi:10.1103/PhysRevLett.100.063903

    17. Rahm, M, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Letts., Vol. 100, 063903, 2008.
    doi:10.1063/1.1784272

    18. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Phys. Today, Vol. 57, 37-43, 2004.
    doi:10.1103/PhysRevLett.99.017401

    19. Rockstuhl, C., F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Letts., Vol. 99, 017401, 2007.
    doi:10.1103/PhysRevLett.99.107401

    20. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Letts., Vol. 99, 107401, 2007.

    21. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

    22. Choi, S. H., D. W. Seo, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1689-1702, 2007.
    doi:10.1163/156939307783134254

    23. Li, Y. L., J. Y. Huang, and M. J. Wang, "Scattering cross section for airborne and its application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2341-2349, 2007.
    doi:10.1163/156939307783152957

    24. Du, P., B. Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic function method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2085-2094, 2007.

    25. Abd-El-Raouf, H. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007.
    doi:10.1163/156939308786390166

    26. Xi, S., H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1489-1497, 2008.
    doi:10.1103/PhysRevLett.85.3966

    27. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Letts., Vol. 85, 3966-3969, 2000.

    28. Pendry, J. B., "Negative refraction," Contemp. Phys., Vol. 45, 191-202, 2004.

    29. Han, Y. and Z. Wu, "Scattering of a spheroidal particle illuminated by a gaussian beam," Appl. Opt., Vol. 27, 2501-2509, 1988.
    doi:10.1364/OE.16.018545

    30. Yang, T., H. Chen, X. Luo, and H. Ma, "Superscatterer: Enhancement of scattering with complementary media," Opt. Express, Vol. 16, 18545-18550, 2008.
    doi:10.1103/PhysRevB.78.125113

    31. Yan, M., W. Yan, and M. Qiu, "Cylindrical superlens by a coordinate transformation," Phys. Rev. B, Vol. 78, 125113, 2008.
    doi:10.1088/1367-2630/8/10/247

    32. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.