PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 97 > pp. 27-43

PERMITTIVITY DETERMINATION OF FRESH CEMENT-BASED MATERIALS BY AN OPEN-ENDED WAVEGUIDE PROBE USING AMPLITUDE-ONLY MEASUREMENTS

By U. C. Hasar

Full Article PDF (293 KB)

Abstract:
An open-ended waveguide probe has been adapted for complex permittivity determination and hence mechanical property inspection of cement-based materials. The probe uses amplitude-only reflection measurements at different frequencies for this goal, which is suitable for industrial based applications when cost and ease of use are important considerations. We have derived expressions by taking into account of the wavematerial interaction. The reference plane for measurements is set inside the waveguide to measure solely the reflected signal of the dominant mode. It is shown that the measurement results are in good agreement with the theory.

Citation:
U. C. Hasar, " permittivity determination of fresh cement - based materials by an open - ended waveguide probe using amplitude - only measurements ," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409
http://www.jpier.org/PIER/pier.php?paper=09071409

References:
1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.

2. He, X., Z. X. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

3. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

4. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

5. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

6. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

7. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

8. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

9. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

10. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506

11. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

12. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, PIER 75, 239-252, 2007.

13. Hasar, U. C., "Thickness-independent complex permittivity determination of partially ¯lled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, PIER 93, 189-203, 2009.

14. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, PIER 93, 161-176, 2009.

15. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, Jun. 2009.
doi:10.1109/TMTT.2009.2020779

16. Hasar, U. C. and O. Simsek, "A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials," Journal of Phys. D: Appl. Phys., Vol. 42, 075403-075412, Mar. 2009.
doi:10.1088/0022-3727/42/7/075403

17. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Microw. Theory Tech., Vol. 43, 711-718, 1994.

18. Stuchly, S. S. and M. A. Stuchly, "Coaxial line reflection method for measuring dielectric properties at radio and microwave frequencies, a review," IEEE Trans. Instrum. Meas., Vol. 29, 1640-1648, 1999.

19. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Trans. Microw. Theory Tech., Vol. 33, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006

20. Park, M. Y. and H. J. Eom, "Reflection coefficient of a flanged rectangular waveguide radiating into a dielectric slab," Microw. Opt. Technol. Lett., Vol. 35, 401-404, 2002.
doi:10.1002/mop.10619

21. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, 1131-1140, 1999.
doi:10.1109/19.816127

22. Saleh, W. and N. Qaddoumi, "Potential of near-field microwave imaging in breast cancer detection utilizing tapered rectangular waveguide probes," Computer and Electrical Engineering, Vol. 35, 587-593, 2009.
doi:10.1016/j.compeleceng.2008.08.005

23. Chang, C.-W., K.-M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, 1084-1092, 1997.
doi:10.1109/19.676717

24. Trabelsi, S. and S. O. Nelson, "Nondestructive sensing of physical properties of granular materials by microwave permittivity measurement," IEEE Trans. Instrum. Meas., Vol. 55, 953-963, 2006.
doi:10.1109/TIM.2006.873787

25. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004

26. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.

27. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

28. Aydin, A. C., A. Arslan, and R. Gul, "Mesoscale simulation of cement based materials' time-dependent behavior," Computational Materials Science, Vol. 41, 20-26, 2007.
doi:10.1016/j.commatsci.2007.02.012

29. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Curestate monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, 1998.
doi:10.1109/19.744313

30. Neville, A. M., Properties of Concrete, Longman Group, London, UK, 1996.

31. Malhotra, V. M. and N. J. Carino (eds.), Handbook on Nondestructive Testing of Concrete, CRC Press, Boca Raton, FL, 2004.

32. Cuinas, I. and M. G. Sanchez, "Building material characterization from complex transmittivity measurements at 5.8 GHz," IEEE Trans. Antennas Propagat., Vol. 48, 1269-1271, 2000.

33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

34. Oppenheim, A. V., A. S. Willsky, and S. Hamid, Signals and Systems, Prentice Hall, USA, 1997.

35. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

36. Hasar, U. C., "Free-space non-destructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

37. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microw. Antennas Propag., Vol. 4, 10.1049/iet-map.2008.0197.

38. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, 419-421, 2009.
doi:10.1109/LMWC.2009.2020045

39. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid material," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.
doi:10.1109/19.816128

40. Chin, G. Y. and E. A. Mechtly, "Properties of materials," Radio, Electronics, Computer, and Communications, E. C. Jordan (ed.), 4-20-4-23, Howard W. Sams & Co., Indianapolis, IN, 1986.

41. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

42. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Microw. Theory and Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778


© Copyright 2014 EMW Publishing. All Rights Reserved