Vol. 97
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-03
Permittivity Determination of Fresh Cement-Based Materials by an Open-Ended Waveguide Probe Using Amplitude-Only Measurements
By
Progress In Electromagnetics Research, Vol. 97, 27-43, 2009
Abstract
An open-ended waveguide probe has been adapted for complex permittivity determination and hence mechanical property inspection of cement-based materials. The probe uses amplitude-only reflection measurements at different frequencies for this goal, which is suitable for industrial based applications when cost and ease of use are important considerations. We have derived expressions by taking into account of the wavematerial interaction. The reference plane for measurements is set inside the waveguide to measure solely the reflected signal of the dominant mode. It is shown that the measurement results are in good agreement with the theory.
Citation
Ugur Cem Hasar, "Permittivity Determination of Fresh Cement-Based Materials by an Open-Ended Waveguide Probe Using Amplitude-Only Measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409
References

1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.

2. He, X., Z. X. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

3. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

4. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

5. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

6. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

7. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

8. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

9. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

10. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506

11. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

12. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, PIER 75, 239-252, 2007.

13. Hasar, U. C., "Thickness-independent complex permittivity determination of partially ¯lled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, PIER 93, 189-203, 2009.

14. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, PIER 93, 161-176, 2009.

15. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, Jun. 2009.
doi:10.1109/TMTT.2009.2020779

16. Hasar, U. C. and O. Simsek, "A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials," Journal of Phys. D: Appl. Phys., Vol. 42, 075403-075412, Mar. 2009.
doi:10.1088/0022-3727/42/7/075403

17. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Microw. Theory Tech., Vol. 43, 711-718, 1994.

18. Stuchly, S. S. and M. A. Stuchly, "Coaxial line reflection method for measuring dielectric properties at radio and microwave frequencies, a review," IEEE Trans. Instrum. Meas., Vol. 29, 1640-1648, 1999.

19. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Trans. Microw. Theory Tech., Vol. 33, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006

20. Park, M. Y. and H. J. Eom, "Reflection coefficient of a flanged rectangular waveguide radiating into a dielectric slab," Microw. Opt. Technol. Lett., Vol. 35, 401-404, 2002.
doi:10.1002/mop.10619

21. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, 1131-1140, 1999.
doi:10.1109/19.816127

22. Saleh, W. and N. Qaddoumi, "Potential of near-field microwave imaging in breast cancer detection utilizing tapered rectangular waveguide probes," Computer and Electrical Engineering, Vol. 35, 587-593, 2009.
doi:10.1016/j.compeleceng.2008.08.005

23. Chang, C.-W., K.-M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, 1084-1092, 1997.
doi:10.1109/19.676717

24. Trabelsi, S. and S. O. Nelson, "Nondestructive sensing of physical properties of granular materials by microwave permittivity measurement," IEEE Trans. Instrum. Meas., Vol. 55, 953-963, 2006.
doi:10.1109/TIM.2006.873787

25. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004

26. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.

27. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

28. Aydin, A. C., A. Arslan, and R. Gul, "Mesoscale simulation of cement based materials' time-dependent behavior," Computational Materials Science, Vol. 41, 20-26, 2007.
doi:10.1016/j.commatsci.2007.02.012

29. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Curestate monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, 1998.
doi:10.1109/19.744313

30. Neville, A. M., Properties of Concrete, Longman Group, London, UK, 1996.

31. Malhotra, V. M. and N. J. Carino (eds.), Handbook on Nondestructive Testing of Concrete, CRC Press, Boca Raton, FL, 2004.

32. Cuinas, I. and M. G. Sanchez, "Building material characterization from complex transmittivity measurements at 5.8 GHz," IEEE Trans. Antennas Propagat., Vol. 48, 1269-1271, 2000.

33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

34. Oppenheim, A. V., A. S. Willsky, and S. Hamid, Signals and Systems, Prentice Hall, USA, 1997.

35. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

36. Hasar, U. C., "Free-space non-destructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

37. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microw. Antennas Propag., Vol. 4, 10.1049/iet-map.2008.0197.

38. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, 419-421, 2009.
doi:10.1109/LMWC.2009.2020045

39. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid material," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.
doi:10.1109/19.816128

40. Chin, G. Y. and E. A. Mechtly, "Properties of materials," Radio, Electronics, Computer, and Communications, E. C. Jordan (ed.), 4-20-4-23, Howard W. Sams & Co., Indianapolis, IN, 1986.

41. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

42. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Microw. Theory and Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778