PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 96 > pp. 347-359

SIMPLIFIED DESIGN FLOW OF QUASI-OPTICAL SLOT AMPLIFIERS

By I. Russo, L. Boccia, G. Amendola, and G. Di Massa

Full Article PDF (495 KB)

Abstract:
Quasi-optical (QO) techniques have been extensively studied in recent years because of the promise they hold for medium and high power generation at millimeter- and sub-millimeter-wave frequencies, demonstrating higher efficiency than conventional approaches. In this work a step-by-step flow process is proposed for the design of a slot-based QO amplifier. The proposed design procedure is based on full-wave analysis of the individual building blocks, which are then cascaded to represent the whole system. An experimental assessment is proposed based on the design and on experimental analysis of the behavior of a C-band QO unit cell.

Citation:
I. Russo, L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807
http://www.jpier.org/PIER/pier.php?paper=09072807

References:
1. Mink, J. W., "Quasi-optical power combining of solid state millimeter-wave sources," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, 273-279, 1986.
doi:10.1109/TMTT.1986.1133322

2. Kim, M., et al., "A grid amplifier ," IEEE Microwave and Guided Wave Letters, [see also IEEE Microwave and Wireless Components Letters], Vol. 1, 322-324, 1991.
doi:10.1109/75.93899

3. Kim, M., et al., "A 100-element HBT grid amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1762-1771, 1993.
doi:10.1109/22.247921

4. De Lisio, M., et al., "Modeling and performance of a 100-element pHEMT grid amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2136-2144, 1996.
doi:10.1109/22.556440

5. Cheung, C.-T., M. P. DeLisio, J. J. Rosenberg, R. Tsai, R. Kagiwada, and D. B. Rutledge, "A single chip two-stage W-band grid amplifier," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 79-82, 2004.

6. Bundy, S. C. and Z. B. Popovic, "A generalized analysis for grid oscillator design," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2486-2491, 1994.
doi:10.1109/22.339786

7. Deckman, B., D. Rutledge, J. J. Rosenberg, E. Sovero, D. S. Deakin, and Jr., "A 1Watt 38 GHz monolithic grid oscillator," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1843-1845, 2001.

8. Rahman, M., T. Ivanov, and A. Mortazawi, "A unit cell design for contruction of quasi-optical power combining oscillator arrays," Southcon/96, Conference Record, 413-415, 1996.
doi:10.1109/SOUTHC.1996.535103

9. Tsai, H. S., M. J. W. Rodwell, and R. A. York, "Planar amplifier array with improved bandwidth using folded slots," IEEE Microwave and Guided Wave Letters, Vol. 4, 112-114, 1994.
doi:10.1109/75.282576

10. Tsai, H. S. and R. A. York, "FDTD analysis of CPW-fed folded slot and multiple-slot antennas on thin substrates," IEEE Transactions on Antennas and Propagation, Vol. 44, 217-226, 1996.
doi:10.1109/8.481651

11. Marshall, T., M. Forman, and Z. Popovic, "Two Ka-band quasi-optical amplifier arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2568-2573, 1999.
doi:10.1109/22.809008

12. Tsai, H. S. and R. A. York, "Polarisation-rotating quasi-optical reflection amplifier cell," Electronics Letters, Vol. 29, 2125-2127, 1993.
doi:10.1049/el:19931421

13. Ortiz, S. C., T. Ivanov, and A. Mortazawi, "A CPW-fed microstrip patch quasi-optical amplifier array," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 276-280, 2000.
doi:10.1109/22.821775

14. Ortiz, S. C., J. Hubert., L. Mirth, E. Schlecht, and A. Mortazawi, "A high-power Ka-band quasi-optical amplifier array," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 487-494, 2002.
doi:10.1109/22.982228

15. Kim, D. and J.-I. Choi, "Analysis of a High-Gain Fabry-PERot cavity antenna with an FSS superstrate: Effective medium approach," Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009.
doi:10.2528/PIERL09011801

16. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG substrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

17. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., London, UK, 1986.

18. Nitshisopa, K., J. Nakasuwan, N. Songthanapitak, N. Anantrasirichai, and T. Wakabayashi, Design CPW fed slot antenna for wideband applications, PIERS Online, Vol. 3, No. 7, 1124-1127, 2007.

19. Li, Q. and Z. Shen, "Inverted microstrip-fed cavity-backed slot antenna," IEEE Antennas and Wireless Prop. Letters, Vol. 1, 98-101, 2002.

20. Weller, T. M., L. P. B. Katehi, and G. M. Rebeiz, "Single and double folded-slot antennas on semi-infinite substrate," IEEE Transactions on Antennas and Propagation, Vol. 43, 1423-1428, 1995.
doi:10.1109/8.475932

21. Chen, Y. B., X. F. Liu, Y. C. Jiao, and F. S. Zhang, "A frequency reconfigurable CPW-fed slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1673-1678, 2007.

22., Ansoft HFSS, Ansoft Corporation.

23. Virdee, B. S., A. S. Virdee, and B. Y. Banyamin, Broadband Microwave Amplifiers, Artech House, London, UK, 2004.

24., Ansoft Designer/NEXXIM, Ansoft Corporation.


© Copyright 2014 EMW Publishing. All Rights Reserved