PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 96 > pp. 361-376

ON THE USE OF DIMENSION AND LACUNARITY FOR COMPARING THE RESONANT BEHAVIOR OF CONVOLUTED WIRE ANTENNAS

By M. Comisso

Full Article PDF (217 KB)

Abstract:
This paper analyzes the possibility to use dimension and lacunarity for comparing the resonant behavior of different convoluted wire antennas, including prefractal dipoles. Since previous studies have proved that the Hausdorff fractal dimension is not suitable for antenna comparison purposes, this work proposes the adoption of a different approach for evaluating the dimension by using the measurement at scale δ, which is more suitable for analyzing real phenomena. The results provided by this measure are compared to those obtained by using the average lacunarity. The objective is to verify if, given two convoluted wire dipoles, the dimension and average lacunarity provide sufficient information to infer which dipole exhibits the lower resonances.

Citation:
M. Comisso, " on the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas ," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
doi:10.2528/PIER09082505
http://www.jpier.org/PIER/pier.php?paper=09082505

References:
1. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888

2. Naghshvarian-Jahromi, M. and N. Komjani, "Novel fractal monopole wideband antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 195-205, 2008.
doi:10.1163/156939308784160758

3. Cui, G., Y. Liu, and S. Gong, "A novel fractal patch antenna with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2403-2411, 2007.
doi:10.1163/156939307783134335

4. Chen, X. and K. Huang, "Wideband properties of fractal bowtie dipoles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1511-1518, 2006.
doi:10.1163/156939306779274345

5. Ataeiseresht, R., C. H. Ghobadi, and J. Nourinia, "A novel analysis of minkowski fractal microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1115-1127, 2006.
doi:10.1163/156939306776930268

6. Wu, W. and Y. H. Bi, "Switched-beam planar fractal antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 409-415, 2006.
doi:10.1163/156939306775701786

7. Yeo, U. B., J. N. Lee, J. K. Park, H. S. Lee, and H. S. Kim, "An ultra-wideband antenna design using sierpinski sieve fractal," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1713-1723, 2008.
doi:10.1163/156939308786390148

8. Salmasi, M. P., F. H. Kashani, and M. N. Azarmanesh, "A novel broadband fractal sierpinski shaped microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.

9. Khan, S. N., J. Hu, J. Xiong, and S. He, "Circular fractal monopole antenna for low VSWR UWB applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903

10. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "Fractal dimension and frequency response of fractal shaped antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 222-225, Jun. 22-27, 2003.

11. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352

12. Gonzalez, J. M. and J. Romeu, "Experiences on monopoles with the same fractal dimension and different topology ," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 218-221, Jun. 22-27, 2003.

13. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-27, 2003.
doi:10.1109/MAP.2003.1232160

14. Sengupta, K. and K. J. Vinoy, "A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behavior of Koch dipole antennas," Fractals, Vol. 14, No. 4, 271-282, 2006.
doi:10.1142/S0218348X06003313

15. Comisso, M., "Theoretical and numerical analysis of the resonant behavior of the minkowski fractal dipole antenna," IET Microwaves, Antennas and Propagation, Vol. 3, No. 3, 456-464, 2009.
doi:10.1049/iet-map.2008.0249

16. Ansarizadeh, M., A. Ghorbani, and R. A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403

17. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, New York, 1990.

18. Burke, G. J. and A. J. Poggio, Numerical Electromagnetic Code (NEC) Method of Moments, Naval Ocean Systems Center, San Diego, CA, 1980.

19. Martorella, M., F. Berizzi, and E. D. Mese, "On the fractal dimension of sea surface backscattered signal at low grazing angle," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1193-1204, 2004.
doi:10.1109/TAP.2004.827533

20. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1977.

21. Allain, C. and M. Cloitre, "Characterizing the lacunarity of random and deterministic fractal sets," Physical Review A, Vol. 44, No. 6, 3352-3558, 1991.
doi:10.1103/PhysRevA.44.3552

22. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, New York, 1997.


© Copyright 2014 EMW Publishing. All Rights Reserved