PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 96 > pp. 309-328

CHARACTERIZATION OF THE VALIDITY REGION OF THE EXTENDED T-MATRIX METHOD FOR SCATTERING FROM DIELECTRIC CYLINDERS WITH FINITE LENGTH

By W.-Z. Yan, Y. Du, Z. Li, E.-X. Chen, and J.-C. Shi

Full Article PDF (326 KB)

Abstract:
The T-matrix approach is effective in analyzing electromagnetic scattering from finite scatterers. Yet for scatterers with extreme geometry, this approach may fail. One example is its inability to analyze scattering from dielectric cylinders with large aspect ratios. To deal with such difficulty, recently we proposed a method based on an extension of the T-matrix approach, where a long cylinder is hypothetically divided into a cluster of identical sub-cylinders, for each the T matrix can be numerically stably calculated. Special care was paid to fulfill the boundary conditions at the hypothetic surface of any two neighboring sub-cylinders. The resultant coupled equations are different from that of multi-scatterer theory. The model results were in good agreement with experiment data available in the literature. However, the validity region of the proposed method was not fully characterized. Now we have developed and validated a method of moment (MoM) code, and are in a position to carry on the task of characterizing the validity region. The proposed method is found to be applicable to dielectric cylinders of arbitrary length as long as the T matrix is attainable for the elementary sub-cylinder. The conditions for the T matrix to be numerically stably calculated in terms of the equivalent volumetric radius and relative dielectric constant are also empirically obtained.

Citation:
W.-Z. Yan, Y. Du, Z. Li, E.-X. Chen, and J.-C. Shi, "Characterization of the Validity Region of the Extended T-Matrix Method for Scattering from Dielectric Cylinders with Finite Length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101
http://www.jpier.org/PIER/pier.php?paper=09083101

References:
1. Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," Int. J. Remote Sensing, Vol. 38, No. 7, 2097-2128, 2000.

2. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, and T. L. Toan, "Branching model for vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 390-402, 1992.
doi:10.1109/36.134088

3. Chiu, T. and K. Sarabandi, "Electromagnetic scattering from short branching vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 2, 911-925, 2000.
doi:10.1109/36.841974

4. Du, Y., Y. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

5. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from parallel perfect electromagnetic conductor cylinders of circular cross-sections using an iterative procedure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 987-1003, 2008.
doi:10.1163/156939308784150209

6. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfect electromagnetic conductor cylinder," Progress In Electromagnetics Research Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601

7. Mishra, M. and N. Gupta, "Application of quasi Monte Carlo integration technique in EM scattering from finite cylinders," Progress In Electromagnetics Research Letters, Vol. 9, 109-118, 2009.
doi:10.2528/PIERL09050806

8. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

9. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," IEEE Trans. Geosci. Remote Sensing, Vol. 26, 799-808, 1988.
doi:10.1109/36.7711

10. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," Int. J. Remote Sensing, Vol. 9, 1109-1134, 1988.
doi:10.1080/01431168808954918

11. Waterman, P. C., Matrix formulation of electromagnetic scattering, Proc. IEEE, Vol. 53, 805-811, 1956.

12. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge U. Press, 1985.

13. Mishchenko, M. I. and L. D. Travis, "T-matrix computations of light scattering by large spheroidal particles," Opt. Commun., Vol. 109, 16-21, 1994.
doi:10.1016/0030-4018(94)90731-5

14. Mishchenko, M. I., L. D. Travis, and A. Macke, "Scattering of light by polydisperse, randomly oriented, finite circular cylinders," Appl. Opt., Vol. 35, 4927-4940, 1996.
doi:10.1364/AO.35.004927

15. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7

16. Wielaard, D. J., M. I. Mishchenko, A. Macke, and B. E. Carlson, "Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation," Appl. Opt., Vol. 36, 4305-4313, 1997.
doi:10.1364/AO.36.004305

17. Mishchenko, M. I., "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt., Vol. 39, 1026-1031, 2000.
doi:10.1364/AO.39.001026

18. Barber, P. W., "Resonance electromagnetic absorption by non-spherical dielectric objects," IEEE Trans. Microwave Theory Tech., Vol. 25, 373-371, 1954.
doi:10.1109/TMTT.1977.1129106

19. Yan, W.-Z., Y. Du, H. Wu, D. Liu, and B.-I. Wu, "EM scattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106

20. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objcts," IEEE Trans. Antennas Propagat., Vol. 34, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

21. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

22. Wang, L. F., J. A. Kong, K. H. Ding, T. Le Toan, F. Ribbes, and N. Floury, "Electromagnetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601

23. Arslan, A. N., J. Pulliainen, and M. Hallikainen, "Observations of L-and C-band backscatter and a semi-empirical backscattering model approach from a forest-snow-ground system," Progress In Electromagnetics Research, Vol. 56, 263-281, 2006.
doi:10.2528/PIER05062701

24. Stein, S., "Addition theorems for spherical ware functions," Q. Appl. Math., Vol. 19, 15-24, 1961.

25. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, New York, 1985.

26. Xu, Y. L., "Electromagnetic scattering by an aggregate of spheres," Appl. Opt., Vol. 34, 4573-4588, 1995.
doi:10.1364/AO.34.004573

27. Mishchenko, M. I., "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of size comparable to a wavelength," Appl. Opt., Vol. 32, 4652-4666, 1993.
doi:10.1364/AO.32.004652

28. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved