PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 98 > pp. 1-13

A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING

By J. Yu, M. Yuan, and Q. H. Liu

Full Article PDF (470 KB)

Abstract:
A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than -10 dB from 2.7 to 5 GHz. The scattered field detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber.

Citation:
J. Yu, M. Yuan, and Q. H. Liu, " a wideband half oval patch antenna for breast imaging ," Progress In Electromagnetics Research, Vol. 98, 1-13, 2009.
doi:10.2528/PIER09090304
http://www.jpier.org/PIER/pier.php?paper=09090304

References:
1. Fear, E. C., S. C. Hagness, and P. M. Meaney, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Mag., Vol. 3, No. 1, 48-56, 2002.
doi:10.1109/6668.990683

2. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1854-1863, 2000.
doi:10.1109/22.883862

3. Liu, Q. H., Z. Q. Zhang, T. Wang, G. Ybarra, L. W. Nolte, J. A. Bryan, and W. T. Joines, "Active microwave imaging I: 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256

4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933

5. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

6. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

7. Zhang, Z. Q., Q. H. Liu, C. Xiao, E. Ward, G. Ybarra, and W. T. Joines, "Microwave breast imaging: 3-D forward scattering simulation ," IEEE Trans. Biomed. Eng., Vol. 50, No. 10, 1180-1189, 2003.
doi:10.1109/TBME.2003.817634

8. Yu, C., M. Yuan, J. P. Stang, J. E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661

9. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
doi:10.1163/156939308786390021

10. Chen, G., Z. Zhao, Z. Nie, and Q. H. Liu, "Computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
doi:10.1163/156939308787522555

11. Ybarra, G. A., Q. H. Liu, J. Stang, and W. T. Joines, "Microwave breast imaging ," Emerging Technologies in Breast Imaging and Mammography, J. Suri, R. M. Rangayyan, and S. Laxminarayan (eds.), American Scientific Publishers, 2008.

12. Ybarra, G. A., Q. H. Liu, G. Ye, K. H. Lim, R. George, and W. T. Joines, "Breast imaging using electrical impedance tomography (EIT)," Emerging Technologies in Breast Imaging and Mammography, Ed.: J. Suri, R. M. Rangayyan, and S. Laxminarayan, American Scientific Publishers, 2008.

13. Ye, G., K. H. Lim, R. George, Jr., G. Ybarra, W. T. Joines, and Q. H. Liu, "3-D EIT for breast cancer imaging: System, measurements, and reconstruction," Microwave Opt. Technol. Lett., Vol. 50, No. 12, 3261-3271, 2008.
doi:10.1002/mop.23932

14. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

15. Woten, D. A. and M. El-Shenawee, "Broadband dual linear polarized antenna for statistical detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3576-3580, 2008.
doi:10.1109/TAP.2008.2005545

16. Huang, W. and A. A. Kishk, "Compact dielectric resonator antenna for microwave breast cancer detection," IET Microw. Antennas Propag., Vol. 3, No. 4, 638-644, 2009.
doi:10.1049/iet-map.2008.0170

17. Jafari, H. M., J. M. Deen, S. Hranilovic, and N. K. Nikolova, "Copolarised and cross-polarised antenna arrays for breast, cancer detection," IET Microw. Antennas Propag., Vol. 1, No. 5, 1055-1058, 2007.
doi:10.1049/iet-map:20060327

18. Yun, X., E. C. Fear, and R. H. Johnston, "Compact antenna for radar-based breast cancer detection," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2374-2380, 2005.
doi:10.1109/TAP.2005.852308

19. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection," IET Microw. Antennas Propag., Vol. 1, No. 2, 277-281, 2007.
doi:10.1049/iet-map:20050189

20. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

21. Yuan, M., C. Yu, J. P. Stang, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Experiments and simulations of an antenna array for biomedical microwave imaging applications," URSI Meeting, San Diego, CA, July 2008.

22. Stang, J. P., W. T. Joines, Q. H. Liu, R. T. George, G. A. Ybarra, M. Yuan, and I. Leonhardt, "A tapered microstrip patch antenna array for use in breast cancer screening via 3D active microwave imaging ," APS-URSI Meeting, Charleston, SC, June 2009.

23. Jossinet, J. and M. Schmitt, "A review of parameters for the bioelectrical characterization of breast tissue," Ann. N. Y. Acad Sci., Vol. 873, 30-41, 1999.
doi:10.1111/j.1749-6632.1999.tb09446.x

24. Woten, D. A., J. Lusth, and M. El-Shenawee, "Interpreting artificial neural networks for microwave detection of breast cancer," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 12, 825-827, 2007.
doi:10.1109/LMWC.2007.910466

25. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

26. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6039-6115, 2007.


© Copyright 2014 EMW Publishing. All Rights Reserved