Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 99 > pp. 131-148


By M. Y. Koledintseva, R. E. DuBroff, and R. W. Schwartz

Full Article PDF (218 KB)

An analytical model of an effective permittivity of a composite taking into account statistically distributed orientations of inclusions in the form of prolate spheroids will be presented. In particular, this paper considers the normal Gaussian distribution for either zenith angle, or azimuth angle, or for both angles describing the orientation of inclusions. The model is an extension of the Maxwell Garnett (MG) mixing rule for multiphase mixtures. The resulting complex permittivity is a tensor in the general case. The formulation presented shows that the parameters of the distribution law for orientation of inclusions affect the frequency characteristics of the composites, and that it is possible to engineer the desirable frequency characteristics, if the distribution law is controlled.

M. Y. Koledintseva, R. E. DuBroff, and R. W. Schwartz, "Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions," Progress In Electromagnetics Research, Vol. 99, 131-148, 2009.

1. Mackay, T. G., A. Lakhtakia, and W. S. Weiglhofer, "Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the bilocal-approximated strong-property-fluctuation theory," Opt. Commun., Vol. 197, 89-95, 2001.

2. Weighlhofer, W. S. and A. Lahtakia, "Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis," J. Phys. D: Appl. Phys., Vol. 26, 2117-2122, 1993.

3. Michel, B., A. Lakhtakia, and W. S. Weiglhofer, "Homogenization of linear bianisotropic particulate composite media --- Numerical studies," Int. J. of Applied Electromagnetics and Mechanics, Vol. 9, 167-178, 1998.

4. Lakhtakia, A., Michel, and W. S. Weiglhofer, "Bruggemen formalism for two models of uniaxial composite media: Dielectric properties," Composites Science and Technology, Vol. 57, No. 2, 185-196, 1997.

5. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, Jul. 1988.

6. Sihvola, A. H., J. O. Juntunen, and P. Eratuuli, "Macroscopic electromagnetic properties of bi-anisotropic mixtures," IEEE Trans. Antennas and Propagation, Vol. 44, No. 6, 836-843, Jun. 1996.

7. Levy, O. and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B, Vol. 56, No. 13, 8035-8046, Oct. 1997.

8. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Sect. A, Vol. 3, 385-420, 1904.

9. Bruggeman, D. A. G., "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Annalen der Physik, Vol. 5, No. 24, 636-679, 1936.

10. Beroual, A., C. Brosseau, and A. Boudida, "Permittivity of lossy dielectric heterostructures. Effect of shape anisotropy," J. Phys. D: Appl. Phys., Vol. 33, 1969-1974, 2000.

11. Brosseau, C., A. Beroual, and A. Boudida, "How shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures?," J. Appl. Phys., Vol. 88, 7278-7288, 2000.

12. Ao, C. O. and J. A. Kong, "Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids," J. Opt. Soc. Am. A, Vol. 19, 1145-1156, Jun. 2002.

13. Qing, A., X. Xu, and Y. B. Gan, "Effective permittivity tensor of a composite material with aligned spheroidal inclusions," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 899-910, 2004.

14. Qing, A., X. Xu, and Y. B. Gan, "Anisotropy of composite materials with inclusion orientation preference," IEEE Trans. Antennas and Propagation, Vol. 53, No. 2, 737-744, Feb. 2005.

15. Twersky, V., "Coherent scalar field in pair-correlated random distribution of aligned scatterers," J. Math. Phys., Vol. 18, 2468-2486, 1977.

16. Varadan, V. V. and V. K. Varadan, "Anisotropic dielectric properties of media containing aligned non-spherical scatterers," IEEE Trans. Antennas and Propagation, Vol. 33, No. 8, 886-890, Aug. 1985.

17. Skryabin, I. L., A. V. Radchik, P. Moses, and G. B. Smith, "The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites," Appl. Phys. Lett., Vol. 70, No. 17, 2221-2223, Apr. 1997.

18. Barrera, R. G., J. Giraldo, and W. L. Mochan, "Effective dielectric response of a composite with aligned spheroidal inclusions," Phys. Rev. B, Vol. 47, No. 4, 8528-8538, Apr. 1993.

19. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Review B, Vol. 53, No. 9, 6318-6336, Mar. 1996.

20. Xu, X., A. Qing, Y. B. Gan, and Y. P. Feng, "Effective properties of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 5, 649-662, 2004.

21. Sturman, P. C. and R. L. McCullough, "Permittivity of dilute fiber suspension," Composites Science and Technology, Vol. 44, 29-41, 1992.

22. Reynolds, J. A. and J. M. Hough, "Formulae for dielectric constant of mixtures," Proceedings of the Physical Society, Section B, Vol. 70, No. 8, 769-775, 1957.

23. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, Institution of Engineering and Technology (IET), London, UK, 1999.

24. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies," Proc. IEEE EMC Symposium, Vol. 1, 169-174, Chicago, IL, Aug. 2005.

25. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, Santa Clara, CA, Aug. 9-13, 2004.

26. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetic Research B, Vol. 15, 197-215, 2009.

27. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetic Research, Vol. 63, 223-242, 2006.

28. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetic Research, Vol. 66, 213-228, 2006.

29. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetic Research, Vol. 77, 193-214, 2007.

30. Pollak, B. P., V. V. Kolchin, and A. E. Hanamirov, "The nature of the ferromagnetic linewidth of polycrystalline hexaferrites," Russian Physics Journal, Vol. 12, No. 1, 14-16, Russia, 1969.

31. Pollak, B. P., "Analysis of peculiarities of magnetic susceptibility tensor of polycristalline hexagonal ferrite," Trans. Moscow Power Engineering Institute, Vol. 320, 45-53, Russia, 1977.

32. Kitaytsev, A. A., M. Y. Koledintseva, V. P. Cheparin, and A. A. Shinkov, "Electrodynamic parameters of composite gyromagnetic material based on hexagonal ferrites," Proc. URSI Symp. Electromagnetic Theory EMT'98, Vol. 2, 790-793, Greece, Thessaloniki, May 1998.

33. Kitaytsev, A., M. Koledintseva, and A. Shinkov, "Effective permittivity and permeability of composite gyromagnetic material with hexagonal ferrite filler," Proc. 43 Scientific Colloq. Technical Univ. Ilmenau, Vol. 3, 451-455, Section C3.5.4, Germany, Sep. 21-24, 1998.

© Copyright 2014 EMW Publishing. All Rights Reserved