PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 97 > pp. 259-274

SOLUTION TO ELECTROMAGNETIC SCATTERING BY BI-ISOTROPIC MEDIA USING MULTILEVEL GREEN'S FUNCTION INTERPOLATION METHOD

By Y. Shi and C. H. Chan

Full Article PDF (471 KB)

Abstract:
In this paper, a multilevel Green's function interpolation method (MLGFIM) is developed to analyze electromagnetic scattering from an arbitrarily shaped three-dimensional objects comprised of both conductor and bi-isotropic media. The field decomposition method is adopted to split the homogeneous bi-isotropic media into two uncoupled isotropic media instead of direct calculation of complicated Green's function in bi-isotropic material. The problem is formulated using the Paggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) approach for multiple homogeneous isotropic media and electric field approach for conducting bodies. The resultant integral equations are discretized by the method of moment (MoM) and iteratively solved by MLGFIM. Numerical examples illustrate accuracy of this algorithm and CPU time of O(Nlog N) and memory requirement of O(N).

Citation:
Y. Shi and C. H. Chan, "Solution to Electromagnetic Scattering by BI-Isotropic Media Using Multilevel Green's Function Interpolation Method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001
http://www.jpier.org/PIER/pier.php?paper=09092001

References:
1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Norwood, MA, 1994.

2. Serdyukov, A., I. Semchenko, S. Treyakov, and A. Sihvola, Elecromagnetics of Bi-anisotropic Materials Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.

3. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.
doi:10.1016/0009-2614(74)85144-4

4. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.
doi:10.1016/0021-9797(78)90189-3

5. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

6. Wang, D. X., E. K. N. Yung, R. S. Chen, and P. Y. Lau, "An efficient volume integral equation solution to EM scattering by complex bodies with inhomogeneous bi-isotropy," IEEE Trans. Antennas Propagat., Vol. 55, 1970-1980, 2007.
doi:10.1109/TAP.2007.900260

7. Semichaevsky, A., A. Akyurtlu, D. Kem, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres ," IEEE Trans. Antennas Propagat., Vol. 54, 925-932, 2006.
doi:10.1109/TAP.2006.869898

8. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propagat., Vol. 52, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153

9. Sharma, R. and N. Balakrishnan, "Scattering of electromagnetic waves from arbitrary shaped bodies coated with a chiral material," Smart Mater. Struct., Vol. 7, 851-866, 1998.
doi:10.1088/0964-1726/7/6/013

10. Sheng, X. Q., J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, 1718-1726, 1998.
doi:10.1109/8.736628

11. Kolundzija, B. M., "Electromagnetic modeling of composite metallic and dielectric structures," IEEE Trans. Microw. Theory Tech., Vol. 47, 1021-1032, 1999.
doi:10.1109/22.775434

12. Donepudi, K. C., J. M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 51, 2814-2821, 2003.
doi:10.1109/TAP.2003.817979

13. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetic Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

14. Wang, H. G., C. H. Chan, and L. Tsang, "A new multilevel Green's function interpolation method for large-scale low-frequency EM simulations," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 24, 1427-1443, 2005.
doi:10.1109/TCAD.2005.850804

15. Wang, H. G. and C. H. Chan, "The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 55, 1348-1358, 2007.
doi:10.1109/TAP.2007.895576

16. Li, L., H. G. Wang, and C. H. Chan, "An improved multilevel Green's function interpolation method with adaptive phase compensation for large-scale full-wave EM simulation," IEEE Trans. Antennas Propagat., Vol. 56, 1381-1393, 2008.
doi:10.1109/TAP.2008.922611

17. Shi, Y., H. G. Wang, L. Li, and C. H. Chan, "Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects," J. Opt. Soc. Am. A, Vol. 25, 2535-2548, 2008.
doi:10.1364/JOSAA.25.002535

18. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving a boundary integral equation of wave scattering," Microw. Opt. Tech. Lett., Vol. 7, 456-461, 1994.
doi:10.1002/mop.4650071013

19. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855

20. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, MA, 2001.

21. Zhao, X. W., X.-J. Dang, Y. Zhang, and C.-H. Liang, "MLFMA analysis of waveguiude arrays with narrow-wall slots," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1063-1078, 2007.

22. Wang, P., Y.-J. Xie, and R. Yang, "Novel pre-corrected multilevel fast multipole algorithm for electrical large radiation problem," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1733-1743, 2007.

23. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular with DES ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803

24. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 16, 1059-1072, 1997.
doi:10.1109/43.662670

25. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propagat., Vol. 52, 818-824, 2005.

26. Yuan, T., L.-W. Li, M.-S. Leong, J.-Y. Li, and N. Yuan, "Efficient analysis and design of finite phased arrays of printed dipoles using fast algorithm: Some case studies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 737-754, 2007.
doi:10.1163/156939307780749057

27. Mittra, R., Computer Techniques for Electromagnetics, Permagon, Elmsford, NY, 1973.

28. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," AEU, Vol. 33, 71-80, 1979.

29. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, 329-342, 1997.
doi:10.1109/8.558649

30. Horn, R. A. and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

31. Wang, H. G., C. H. Chan, L. Tsang, and K. F. Chan, "Mixture effective permittivity simulations using IMLMQRF method on preconditioned EFIE ," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603

32. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986.

33. Rui, P.-L. and R.-S. Chen, "Implicitly restarted gmres fast fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968

34. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, 770-774, 1992.
doi:10.1109/8.155741


© Copyright 2014 EMW Publishing. All Rights Reserved