PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 98 > pp. 267-282

DETECTING DISSIMILARITIES IN EM CONSTITUTIVE PARAMETERS USING DIFFERENTIAL IMAGING OPERATOR ON RECONSTRUCTED WAVEFIELD

By M. I. Raza and R. E. DuBroff

Full Article PDF (377 KB)

Abstract:
Electromagnetic field will scatter when incident on boundaries separating media with different constitutive parameters. This paper demonstrates the use of a differential operator on recorded scattered waves to reveal the shape of the boundary. The method is noninvasive and is composed of three phases. First, the area of interest is illuminated and the resulting scattered electromagnetic fields are recorded. In the 2nd phase, the captured data is numerically reverse simulated in time to reconstruct the field distribution in the region of interest. Finally, the differential imaging operator is applied on the reconstructed wave field, creating an image delineating the boundary where scattered fields originated. This technique does not require the knowledge of location of the boundaries nor the nature of the discontinuity in the constitutive parameters. The proposed imaging system is scalable, whereby modification of the source signal, recorder sampling, and numerical model allows imaging objects of smaller dimensions and creation of sharper and more accurate images.

Citation:
M. I. Raza and R. E. DuBroff, "Detecting dissimilarities in EM constitutive parameters using differential imaging operator on reconstructed wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
doi:10.2528/PIER09092403
http://www.jpier.org/PIER/pier.php?paper=09092403

References:
1. Blackledge, J. M. and L. Zapalowski, "Quantitative solutions to the inverse scattering problem with applications to medical imaging," Inverse Problems, Vol. 1, 17-32, 1985.
doi:10.1088/0266-5611/1/1/004

2. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

3. Kuster, M., et al., "Acoustic imaging in enclosed spaces: Analysis of room geometry modi¯cations on the impulse response ," J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, 2126-2136, Oct. 2004.

4. Niendorf, T. and D. K. Sodickson, Highly accelerated cardiovascular magnetic resonance imaging: Concepts and clinical applications, Proceedings of the 28th IEEE EMBS Annual International Conference, 373-376, New York City, USA, Aug. 2006.

5. Wapenaar, C. P. A., G. L. Peels, V. Budejick, and A. J. Berkhout, "Inverse extrapolation of primary seismic waves," Geophysics, Vol. 54, No. 7, 853-863, Jul. 1989.
doi:10.1190/1.1442714

6. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

7. Chang, W. F. and G. A. Cahon, "3D acoustic reverse-time migration," Geophysical Prospecting, Vol. 37, 243-256, Apr. 1989.
doi:10.1111/j.1365-2478.1989.tb02205.x

8. Stolt, R. H., "Migration by fourier transform," Geophysics, Vol. 43, 23-48, 1978.
doi:10.1190/1.1440826

9. Lei, J., S. Liu, Z. H. Li, and M. Sun, "Image reconstruction algorithm based on the extended regularized total least squares method for electrical capacitance tomography," IET Science, Measurement & Technology, Vol. 2, 326-336, Sep. 2008.
doi:10.1049/iet-smt:20080029

10. Yu, J., Z. Huang, H. Ji, B.Wang, and H. Li, "Image reconstruction algorithm of electrical resistance tomography for the measurement of two-phase flow," Proceedings of IEEE Sensors, Vol. 1, 63-66, Oct. 2003.

11. Lam, K., M. J. Yedlin, and C. G. Farquharson, "Two-dimensional radio frequency tomography," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 801-808, Apr. 2007.
doi:10.1109/TMTT.2007.893654

12. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

13. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009.
doi:10.1163/156939309788019822

14. Winton, S. C., P. Kosmas, and C. M. Rappaport, "FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1721-1728, May 2005.
doi:10.1109/TAP.2005.846719

15. DuBroff, R. I., M. I. Raza, and T. J. Herrick, "Remote detection of acoustic boundaries using radiation imaging operators," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 42, 1012-1019, Nov. 1995.

16. Raza, M. I., R. I. DuBroff, and J. L. Drewniak, "Radiation imaging operators applied to the detection of velocity and density contrast boundaries," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 44, 1401-1404, Nov. 1997.

17. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 2004.

18. Pan, P. and D. Schonfeld, "Image reconstruction and multidimensional ¯eld estimation from randomly scattered sensors," IEEE Trans. Image Processing, Vol. 17, 94-99, Jan. 2008.
doi:10.1109/TIP.2007.912579

19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, MA, Jun. 30, 2005.

20. Hira, A., S. A. Hossain, and M. I. Raza, Interpolation techniques to improve RIO boundary detection, PIERS Proceedings, 1234-1238, Beijing, China, March 23-27, 2009.

21. Berenger, J. P., "Perfect matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas Propagat., Vol. 44, 110-117, Jan. 1996.
doi:10.1109/8.477535

22., www.mathworks.com, MATLAB®, Version 7, Release 14.

23. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
doi:10.2528/PIER09090901


© Copyright 2014 EMW Publishing. All Rights Reserved