PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 98 > pp. 175-190

SIMULATION OF TIME MODULATED LINEAR ANTENNA ARRAYS USING THE FDTD METHOD

By S. Yang, Y. Chen, and Z.-P. Nie

Full Article PDF (474 KB)

Abstract:
Time modulated linear antenna arrays consisting of printed dipoles above a ground plane are simulated using the finite-difference time-domain (FDTD) method. The FDTD method brings great convenience to the investigation of the time domain responses of the time modulated arrays. In conjunction with the near-to-far field transformation in time domain, the far-field transient response can be computed to explain the physical essence of different time sequences. By employing the discrete Fourier Transform (DFT) and the frequency domain near-to-far field transformation, the radiation patterns at the frequencies of interest are obtained and are compared with the measured results. Simulation results show that the FDTD method is an effective and accurate approach for the full-wave simulation of time modulated antenna arrays.

Citation:
S. Yang, Y. Chen, and Z.-P. Nie, "Simulation of Time Modulated Linear Antenna Arrays Using the FDTD Method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507
http://www.jpier.org/PIER/pier.php?paper=09092507

References:
1. Kummer, W. H., A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. Antennas Propagat., Vol. 11, No. 5, 633-639, Nov. 1963.

2. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time modulated linear arrays by the differential evolution algorithm," IEEE Antennas and Wireless Propagat. Lett., Vol. 1, 173-175, Dec. 2002.
doi:10.1109/LAWP.2002.807789

3. Yang, S., Y. B. Gan, and P. K. Tan, "Comparative study of low sidelobe time modulated linear arrays with different time schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1443-1458, Nov. 2004.
doi:10.1163/1569393042954910

4. Yang, S., "Study of low sidelobe time modulated linear antenna arrays at millimeter-waves," International Journal of Infrared and Millimeter-waves, Vol. 26, No. 3, 443-456, Mar. 2005.
doi:10.1007/s10762-005-3443-9

5. Yang, S., Y. B. Gan, and P. K. Tan, "A new technique for power pattern synthesis in time modulated linear arrays," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 285-287, Dec. 2003.
doi:10.1109/LAWP.2003.821556

6. Yang, S., Y. B. Gan, A. Qing, and P. K. Tan, "Design of a uniform amplitude time modulated linear array with optimized time sequences," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2337-2339, Jul. 2005.
doi:10.1109/TAP.2005.850765

7. Yang, S. and Z. Nie, "A review of the four dimensional antenna arrays," J. Electron. Sci. Tech. China, Vol. 4, No. 3, 193-201, Sep. 2006.

8. Yang, S., Y. B. Gan, and A. Qing, "Moving phase center antenna arrays with optimized static excitations," Microwave and Optical Tech. Lett., Vol. 38, No. 1, 83-85, Jul. 2003.
doi:10.1002/mop.10977

9. Yang, S., Y. B. Gan, and P. K. Tan, "Linear antenna arrays with bidirectional phase center motion," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1829-1835, May 2005.
doi:10.1109/TAP.2005.846754

10. Yang, S. and Z. Nie, "Mutual coupling compensation in time modulated linear antenna arrays," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 4182-4185, Dec. 2005.
doi:10.1109/TAP.2005.860000

11. Zhu, X., S. Yang, and Z. Nie, "Full-wave simulation of time modulated linear antenna arrays in frequency domain," IEEE Trans. Antennas Propagat., Vol. 56, No. 5, 1479-1482, May 2008.
doi:10.1109/TAP.2008.922701

12. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 8, 302-307, May 1966.

13. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel fdtd method," Progress In Electromagnetics Research, PIER 84, 205-220, 2008.

14. Yun, Z. and M. F. Iskander, "Implementation of floquet boundary conditions in FDTD analysis of periodic phased array antennas with skewed grid," Electromagnetics, Vol. 20, No. 5, 445-452, 2000.
doi:10.1080/027263400750064437

15. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

16. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
doi:10.1006/jcph.1996.0181

17. Yee, K. S., D. Ingham, and K. Shlager, "Time-domain extrapolation to the far field based on FDTD calculations," IEEE Trans. Antennas Propagat., Vol. 39, No. 3, 410-413, Mar. 1991.
doi:10.1109/8.76342

18. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 39, No. 4, 429-433, Apr. 1991.
doi:10.1109/8.81453

19. Reineix, A. and B. Jecko, "Analysis of microstrip patch antennas using finite difference time domain method," IEEE Trans. Antennas Propagat., Vol. 37, No. 11, 1361-1369, Nov. 1989.
doi:10.1109/8.43555

20. Umashankar, K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. Electromagn. Compat., Vol. 24, No. 24, 397-405, Nov. 1982.

21. Taflove, A. K., R. Umashankar, and T. G. Jurgens, "Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths," IEEE Trans. Antennas Propagat., Vol. 33, No. 6, 662-666, Jun. 1985.
doi:10.1109/TAP.1985.1143644


© Copyright 2014 EMW Publishing. All Rights Reserved