Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-10
Estimation of Core Temperature Elevation in Humans and Animals for Whole-Body Averaged SAR
By
Progress In Electromagnetics Research, Vol. 99, 53-70, 2009
Abstract
Biological effects due to whole-body radio-frequency exposure may be induced by core temperature elevation. According to the international safety guidelines/standards for human protection, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric. In order to understand the relationship between WBA-SAR and core temperature elevation, a theoretical solution or a closed formula for estimating core temperature elevation is essential. In the present study, we derived a formula for simply estimating core temperature elevation in humans and animals due to whole-body radio-frequency exposure. The core temperature elevation estimated with the formula is found to be in reasonable agreement with the computational results of finite-difference time-domain computation incorporated in anatomically-based models. Based on the formula, the WBA-SAR is found to be a good metric for estimating core temperature elevation. The main factors influencing the core temperature elevation are the perspiration rate and the body surface area-to-weight ratio.
Citation
Akimasa Hirata, Hironori Sugiyama, and Osamu Fujiwara, "Estimation of Core Temperature Elevation in Humans and Animals for Whole-Body Averaged SAR," Progress In Electromagnetics Research, Vol. 99, 53-70, 2009.
doi:10.2528/PIER09101603
References

1. "Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices ," American Conference of Government Industrial Hygienists (ACGIH), Cincinnati, OH, 1996.

2. ICNIRP "International commission on non-ionizing radiation protection guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, Apr. 1998.

3. IEEE "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", C95-1, 2005.

4. Michaelson, S. M., "Biological effects and health hazard of RF and MWenergy; fundamentals and overall phenomenology," Biological Effects and Dosimetry of Nonionizing Radiation, 337-357, Press, New York, 1983.

5. D'Andrea, J. A., J. R. DeWitt, O. P. Gandhi, S. Stensaas, J. L. Lords, and H. C. Neilson, "Behavioral and physiological effects of chronic 2450-MHz microwave irradiation of the rat at 0.5mW/cm2," Bioelectromagnetics, Vol. 7, 45-56, 1986.
doi:10.1002/bem.2250070106

6. Adair, E. R. and D. R. Black, "Thermoregulatory responses to RF energy absorption," Bioelectromagnetics Suppl., Vol. 6, S17-S38, 2003.
doi:10.1002/bem.10133

7. Guidance for the submission of paremarket notifications for magnetic resonance diagnostic devices, Center for Devices and Radiologic Health, Food and Drug Administration, Rockville, MD, 1998, http://www.fda.gov/cdrh/ode/guidance/793.html.

8. Hirata, A., T. Asano, and O. Fujiwara, "FDTD Analysis of body-core temperature elevation in children and adults for whole-body exposure," Phys. Med. Biol., Vol. 53, 5223-5238, 2008.
doi:10.1088/0031-9155/53/18/025

9. Hirata, A., H. Sugiyama, M. Kojoma, H. Kawai, Y. Yamashiro, O. Fujiwara, S. Watanabe, and K. Sasaki, "Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz," Phys. Med. Biol., Vol. 53, 3391-3404, 2008.
doi:10.1088/0031-9155/53/12/022

10. Fiala, D., K. J. Lomas, and M. Stohrer, "Computer prediction of human thermoregulation and temperature responses to a wide range of environmental conditions," Int. J. Biometeorol., Vol. 45, No. 3, 143-159, 2001.
doi:10.1007/s004840100099

11. Stolwijk, J. A. J. and J. D. Hardy, "Control of body temperature," Handbook of Physiology, Section 9, Reactions to Environmental Agents, H. K. Douglas (ed.), 45-69, American Physiological Society, Bethesda, MD, 1977.

12. Foster, K. R. and E. R. Adair, "Modeling thermal responses in human subjects following extended exposure to radiofrequency energy," Biomed. Online, Vol. 3, 4, 2004.
doi:10.1186/1475-925X-3-4

13. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult male and female of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry," Phys. Med. Biol., Vol. 49, 1-15, 2004.
doi:10.1088/0031-9155/49/1/001

14. Nagaoka, T., E. Kunieda, and S. Watanabe, "Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30MHz to 3 GHz," Phys. Med. Biol., Vol. 53, 6695-6711, 2008.
doi:10.1088/0031-9155/53/23/004

15. Wake, K., H. Hongo, S. Watanabe, M. Taki, Y. Kamimura, Y. Yamanaka, T. Uno, M. Kojima, I. Hata, and K. Sasaki, "Development of a 2.45-GHz local exposure system for in vivo study on ocular effects," IEEE Trans. Microwave Theory & Tech., Vol. 55, 588-596, 2007.
doi:10.1109/TMTT.2006.890531

16. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2003.

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

18. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature elevation in a subject exposed in the far-¯eld of radio-frequency sources operating in the 10-900-MHz range," IEEE Trans. Biomed. Eng., Vol. 50, 295-304, 2003.
doi:10.1109/TBME.2003.808809

19. Wainwright, P. R., "The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band," Phys. Med. Biol., Vol. 48, 3143-3155, 2003.
doi:10.1088/0031-9155/48/19/004

20. Bit-Babik, G., A. Faraone, C.-K. Chou, A. Radmadze, and R. Zaridze, "Correlation between locally averaged SAR distribution and related temperature rise in human body exposed to RF field," Proc. BEMS 2007, 2-5, 2007.

21. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in resting forearm," J. Appl. Physiol., Vol. 1, 93-122, 1948.

22. Follow, B. and E. Neil, Circulation, Oxford Univ. Press, New York, USA, 1971.

23. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

24. Hirata, A., S. Watanabe, M. Kojima, I. Hata, K. Wake, M. Taki, K. Sasaki, O. Fujiwara, and T. Shiozawa, "Computational veri¯cation of anesthesia effect on temperature variations in rabbit eyes exposed to 2.45-GHz microwave energy," Bioelectromagnetics, Vol. 27, 602-612, 2006.
doi:10.1002/bem.20251

25. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

26. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique ," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603

27. Hirata, A., K. Shirai, and O. Fujiwara, "On averaging mass of SAR correlating with temperature elevation due to a dipole antenna ," Progress In Electromagnetics Research, Vol. 84, 221-237, 2008.
doi:10.2528/PIER08072704

28. Foster, K. R. and R. Glaser, "Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines ," Health Phys., Vol. 92, 609-620, 2007.
doi:10.1097/01.HP.0000262572.64418.38

29. Hoque, M. and O. P. Gandhi, "Temperature distribution in the human leg for VLF-VHF exposure at the ANSI recommended safety levels ," IEEE Trans. Biomed. Eng., Vol. 35, 442-449, 1988.
doi:10.1109/10.2114

30. Spiegel, R. J., "A review of numerical models for predicting the energy deposition and resultant thermal responses of humans exposed to electromagnetic fields," IEEE Trans. Microwave Theory & Tech., Vol. 32, 730-746, Aug. 1984.
doi:10.1109/TMTT.1984.1132767

31. Marai, I. F. M., A. A. M. Habeeb, and A. E. Gad, "Rabbits' productive, reproductive and physiological performance traits as affected by heat stress: A review," Livestock Prod. Sci., Vol. 78, 71-90, 2002.
doi:10.1016/S0301-6226(02)00091-X

32. Ebert, S., S. J. Eom, J. Schuderer, U. Spostel, T. Tillmann, C. Dasenbrock, and N. Kuster, "Response, thermal regulatory threshold of restrained RF-exposed mice at 905 MHz," Phys. Med. Biol., Vol. 50, 5203-5215, 2005.
doi:10.1088/0031-9155/50/21/017

33. Nakayama, T. and M. Iriki, "Physiology of energy exchange and thermoregulation," Handbook of Physiological Science, Vol. 18, Igaku-Shoin Ltd., Tokyo, 1987.

34. Wang, J., S. Kodera, O. Fujiwara, and S. Watanabe, "FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30MHz to 3 GHz," Phys. Med. Biol., Vol. 51, 4119-4127, 2005.

35. WHO, RF research agenda, 2006.