Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 99 > pp. 273-287


By D. Gao and L. Gao

Full Article PDF (454 KB)

The Goos-Hanchen (GH) shift of the reflected waves from nonlinear nanocomposites of interleaved nonspherical metal and dielectric particles are investigated both theoretically and numerically. First, based on spectral representation theory and effective medium approximation, we derive the field-dependent effective permittivity of the nonlinear composites. Then the stationary phase method is adopted to study the GH shifts from nonlinear composites. It is found that for a given volume fraction, there exist two critical polarization factors Lc1 and Lc2, and bistable GH shifts appear only when L < Lc1 or L < Lc2. Moreover, both giant negative and positive GH shifts accompanied with large reflectivity are found, hence they can be easily observed in experiments. The reversal of the GH shift may be controlled by adjusting both the incident angle and the applied field. Numerical simulations for Gaussian-type incident beam are performed, and good agreement between simulated data and theoretical ones is found especially for large waist width.

D. Gao and L. Gao, "Tunable Lateral Shift through Nonlinear Composites of Nonspherical Particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.

1. Goos, F. and H. Hanchen, "Ein neuer und fundamentaler versuch zur totalreflexion," Ann. Phys., Vol. 436, 333-346, 1947.

2. Goos, F. and H. Hanchen, "Neumessung des strahlversetzungseffektes bei totalreflexion," Ann. Phys., Vol. 440, 251-252, 1949.

3. Sakata, T., H. Togo, and F. Shimokawa, "Reflection-type 2 x 2 optical waveguide switch using the Goos-Hanchen shift effect," Appl. Phys. Lett., Vol. 76, 2841-2843, 2000.

4. Chen, C. W., W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.

5. Artmann, K., "Berechnung der seitenversetzung des totalreflektierten strahles," Ann. Phys., Vol. 437, No. 1, 87-102, 1948.

6. Bretenaker, F., A. L. Floch, and L. Dutriaux, "Direct measurement of the optical Goos-Hanchen effect in lasers," Phys. Rev. Lett., Vol. 68, 931-933, 1992.

7. Emile, O., T. Galstyan, A. Le Floch, and F. Bretenaker, "Measurement of the nonlinear Goos-Hanchen effect for Gaussian optical beams," Phys. Rev. Lett., Vol. 75, 1511-1513, 1995.

8. Wild, W. J. and C. L. Giles, "Goos-Hanchen shifts from absorbing media," Phys. Rev. A, Vol. 25, 2099-2101, 1982.

9. Lai, H. M. and S. W. Chan, "Large and negative Goos-Hanchen shift near the brewster dip on reflection from weakly absorbing media," Opt. Lett., Vol. 27, 680-682, 2002.

10. Lai, H. M., S. W. Chan, and W. H. Wong, "Nonspecular effects on reflection from absorbing media at and around Brewster's dip," J. Opt. Soc. Am. A, Vol. 23, 3208-3216, 2006.

11. Wang, L. G. and S. Y. Zhu, "Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals," Opt. Lett., Vol. 31, 101-103, 2006.

12. Li, C. F., "Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects," Phys. Rev. Lett., Vol. 91, 133903, 2003.

13. Leung, P. T., C. W. Chen, and H. P. Chiang, "Large negative Goos-Hanchen shift at metal surfaces," Opt. Commun., Vol. 276, 206-208, 2007.

14. Merano, M., A. Aiello, G. W. Hooft, M. P. Van Exter, E. R. Eliel, and J. P. Woerdman, "Observation of Goos-Hanchen shifts in metallic reflection," Opt. Express, Vol. 15, 15928-15934, 2007.

15. Depine, R. A. and N. E. Bonomo, "Goos-Hanchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces," Optik, Vol. 103, 37-41, 1996.

16. Wang, F. and A. Lakhtakia, "Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films," Opt. Commun., Vol. 235, 107-132, 2004.

17. Dong, W. T., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 104, 255-268, 2009.

18. Tamir, T. and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and periodic structures," J. Opt. Soc. Am., Vol. 61, 1397-1413, 1971.

19. Felbacq, D. and R. Smaali, "Bloch modes dressed by evanescent waves and the generalized Goos-Hanchen effect in photonic crystals," Phys. Rev. Lett., Vol. 92, 193902, 2004.

20. Wang, L. G. and S. Y. Zhu, "Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals," Opt. Lett., Vol. 31, 101-103, 2006.

21. Berman, P. R., "Goos-Hanchen shift in negatively refractive media," Phys. Rev. E, Vol. 66, 067603, 2002.

22. Lakhtakia, A., "On planewave remittances and Goos-Hanchen shifts of planar slabs with negative real permittivity and permeability," Electromagnetics, Vol. 23, 71-75, 2003.

23. Shadrivov, I. V., A. A. Zharov, and Y. S. Kivshar, "Giant Goos-Hanchen effect at the reflection from left-handed metamaterials," Appl. Phys. Lett., Vol. 83, 2713-2715, 2003.

24. Lima, F., T. Dumelow, E. L. Albuquerque, and J. A. P. Da Costa, "Power flow associated with the Goos-Hanchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet," Phys. Rev. B, Vol. 79, 155124, 2009.

25. Peccianti, M., A. Dyadyusha, M. Kaczmarek, and G. Assanto, "Tunable refraction and reflection of self-confined light beams," Nat. Phys., Vol. 2, 737-742, 2006.

26. Hou, P., Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, "Giant bistable shifts for one-dimensional nonlinear photonic crystals," Phys. Rev. A, Vol. 75, 045802, 2007.

27. Zhou, H. C., X. Chen, P. Hou, and C. F. Li, "Giant bistable lateral shift owing to surface-plasmon excitation in kretschmann configuration with a Kerr nonlinear dielectric," Opt. Lett., Vol. 33, 1249-1251, 2008.

28. Wang, L. G., M. Ikram, and M. S. Zubairy, "Control of the Goos-Hanchen shift of a light beam via a coherent driving field," Phys. Rev. A, Vol. 77, 023811, 2008.

29. Wang, Y., Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, "Electric control of spatial beam position based on the Goos-Hanchen effect," Appl. Phys. Lett., Vol. 93, 091103, 2008.

30. Chen, X., M. Shen, Z. F. Zhang, and C. F. Li, "Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals," J. Appl. Phys., Vol. 104, 123101, 2008.

31. Shi, L. H., L. Gao, S. L. He, and B. W. Li, "Superlens from metal-dielectric composites of nonspherical particles," Phys. Rev. B, Vol. 76, 045116, 2007.

32. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, 2008.

33. Bergman, D. J., "The dielectric constant of a composite material --- A problem in classical physics," Phys. Rev. B, Vol. 43, 377-407, 1978.

34. Ma, H. R., R. F. Xiao, and P. Sheng, "Third-order optical nonlinearity enhancement through composite microstructures," J. Opt. Soc. Am. B, Vol. 15, 1022-1029, 1998.

35. Gao, L., L. P. Gu, and Z. Y. Li, "Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles," Phys. Rev. E, Vol. 68, 066601, 2003.

36. Bruggman, D. A. G., "Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen," Ann. Phys., Vol. 416, 636-664, 1935.

37. Agarwal, G. S. and S. Dutta Gupta, "T-matrix approach to the nonlinear susceptibilities of heterogeneous media," Phys. Rev. A, Vol. 38, 5678-5687, 1988.

38. Day, A. R. and M. F. Thorpe, "The spectral function of random resistor networks," J. Phys.: Condens. Matter, Vol. 8, 4389-4409, 1996.

39. Russell, J. G. and W. B. Robert, "Optical properties of nanostructured optical materials," Chem. Mater., Vol. 8, 1807-1819, 1996.

40. Uchida, K., S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, and A. J. Ikushima, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: Copper and silver particles," J. Opt. Soc. Am. B, Vol. 11, 1236-2143, 1994.

41. Hou, P., Y. Chen, J. Shi, M. Shen, X. Chen, and Q. Wang, "Anomalous bistable shift for a one-dimensional photonic crystal doped with a subwavelength layer and a nonlinear layer," Europhys. Lett., Vol. 81, 64003, 2008.

42. Yin, X. B., L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, "Large positive and negative lateral optical beam displacements due to surface plasmon resonance," Appl. Phys. Lett., Vol. 85, 372-374, 2004.

43. Wang, L. G. and S. Y. Zhu, "Large positive and negative Goos-Hanchen shifts from a weakly absorbing left-handed slab," J. Appl. Phys., Vol. 98, 043522, 2005.

© Copyright 2014 EMW Publishing. All Rights Reserved