Vol. 104
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-26
An Automatic Model Order Reduction of a UWB Antenna System
By
Progress In Electromagnetics Research, Vol. 104, 267-282, 2010
Abstract
This paper proposes an efficient and automatic means of achieving a reduced model of a transfer function for UWB antenna design. According to the formulation of a transfer function, we have derived two factors, which are critical in determining the radiation pattern and input impedance respectively. Their special formula allow us to establish a reduced model automatically using the Model Order Reduction (MOR) techniques of a second order system. The process is free of any human factors and suitable to any antenna systems, thus enabling a direct and efficient interface with the optimization process in the design of a UWB antenna system. In addition, the proposed way of establishing a transfer function of the whole antenna system has successfully cascaded the entire system into separate subsystems, thus offering deeper insights in analyzing a UWB antenna system.
Citation
Zhan Zhang, and Yee Hui Lee, "An Automatic Model Order Reduction of a UWB Antenna System," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010.
doi:10.2528/PIER09103001
References

1. Zwierzchowski, S. and P. Jazayeri, "A systems and network analysis approach to antenna design for UWB communications," Journal Title Abbreviation, Vol. 1, 826-829, 2003.

2. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," Journal Title Abbreviation, Vol. 52, 1739-1748, 2004.

3. Qing, X. M., Z. N. Chen, and M. Y. W. Chia, "Network approach to UWB antenna transfer functions characterization," The European Conference on Wireless Technology 2005, 293-296, 2005.

4. Zhang, Z. and Y. H. Lee, "A modified model-based interpolation method to accelerate the characterization of UWB antenna system," IEEE Trans. Antennas Propagat., Vol. 55, 475-479, 2007.
doi:10.1109/TAP.2006.889948

5. Rego, C. G. C., J. S. Nunes, and M. N. De Abreu Bueno, "Unified characterization of UWB antennas in time and frequency domains: An approach based on the singularity expansion method," IMOC 2007, 827-831, 2007.

6. Duroc, Y., R. Khouri, V. T. Beroulle, P. Vuong, and S. Tedjini, "Considerations on the characterization and the modelization of ultra-wideband antennas," ICUWB 2007, 491-496, 2007.

7. Licul, S. and W. A. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Trans. Antennas Propagat., Vol. 53, 2882-2888, 2005.
doi:10.1109/TAP.2005.854533

8. Antoulas, A. C., Approximation of Large-Scale Dynamical Systems, Society for Industrial and Applied Mathematic, 2005.

9. Miller, E. K., "Model-based parameter estimation in electromagnetics. II. Applications to EM observables," IEEE Antennas Propag. Mag., Vol. 40, 51-65, 1998.
doi:10.1109/74.683542

10. Zhao, Z. Q., C.-H. Ahn, and L. Carin, "Nonuniform frequency sampling with active learning: Application to wide-band frequency-domain modeling and design," IEEE Trans. Antennas Propagat., Vol. 53, 3049-3057, 2005.
doi:10.1109/TAP.2005.854540

11. Meerbergen, K., "The Quadratic Arnoldi method for the solution of the quadratic eigenvalue problem," SIAM. J. Matrix Anal. Appl., Vol. 30, No. 4, 1463-1482, 2008.
doi:10.1137/07069273X

12. Makarov, S. N., Antenna and EM Modeling with Matlab, Wiley-Interscience, 2002.

13. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

14. Duroc, Y., V. Tan-Phu, and S. Tedjini, "A time/frequency model of ultrawideband antennas," IEEE Trans. Antennas Propagat., Vol. 55, 2342-2350, 2007.
doi:10.1109/TAP.2007.901834

15. Virga, K. L. and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z] or [Y ] matrix interpolation with the method of moments," IEEE Trans. Antennas Propagat., Vol. 47, 65-76, 1999.
doi:10.1109/8.752990

16. Newman, E. H., "Generation of wide-band data from the method of moments by interpolating the impedance matrix [EM problems]," IEEE Trans. Antennas Propagat., Vol. 36, 1820-1824, 1988.
doi:10.1109/8.14404

17. Tisseur, F. and K. Meerbergen, "The quadratic eigenvalue problem," SIAM Review, Vol. 43, 235-286, 2001.
doi:10.1137/S0036144500381988

18. Bai, Z. J. and Y. F. Su, "SOAR: A second-order arnoldi method for the solution of the quadratic eigenvalue problem," SIAM J. Matrix Anal. Appl., Vol. 26, 640-659, 2004.

19. Rommes, J. and N. Martins, "Efficient computation of transfer function dominant poles of large second-order dynamical systems," SIAM J. Sci. Comput., Vol. 30, 2137-2157, 2008.
doi:10.1137/070684562

20. Balmes, E., "Model reduction for systems with frequency dependent damping properties," International Modal Analysis Conference, 1996.

21. Persson, P. O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, 329-345, 2004.
doi:10.1137/S0036144503429121