PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 104 > pp. 267-282

AN AUTOMATIC MODEL ORDER REDUCTION OF A UWB ANTENNA SYSTEM

By Z. Zhang and Y. H. Lee

Full Article PDF (496 KB)

Abstract:
This paper proposes an efficient and automatic means of achieving a reduced model of a transfer function for UWB antenna design. According to the formulation of a transfer function, we have derived two factors, which are critical in determining the radiation pattern and input impedance respectively. Their special formula allow us to establish a reduced model automatically using the Model Order Reduction (MOR) techniques of a second order system. The process is free of any human factors and suitable to any antenna systems, thus enabling a direct and efficient interface with the optimization process in the design of a UWB antenna system. In addition, the proposed way of establishing a transfer function of the whole antenna system has successfully cascaded the entire system into separate subsystems, thus offering deeper insights in analyzing a UWB antenna system.

Citation:
Z. Zhang and Y. H. Lee, "An Automatic Model Order Reduction of a UWB Antenna System," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010.
doi:10.2528/PIER09103001
http://www.jpier.org/PIER/pier.php?paper=09103001

References:
1. Zwierzchowski, S. and P. Jazayeri, "A systems and network analysis approach to antenna design for UWB communications," Journal Title Abbreviation, Vol. 1, 826-829, 2003.

2. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," Journal Title Abbreviation, Vol. 52, 1739-1748, 2004.

3. Qing, X. M., Z. N. Chen, and M. Y. W. Chia, "Network approach to UWB antenna transfer functions characterization," The European Conference on Wireless Technology 2005, 293-296, 2005.

4. Zhang, Z. and Y. H. Lee, "A modified model-based interpolation method to accelerate the characterization of UWB antenna system," IEEE Trans. Antennas Propagat., Vol. 55, 475-479, 2007.
doi:10.1109/TAP.2006.889948

5. Rego, C. G. C., J. S. Nunes, and M. N. De Abreu Bueno, "Unified characterization of UWB antennas in time and frequency domains: An approach based on the singularity expansion method," IMOC 2007, 827-831, 2007.

6. Duroc, Y., R. Khouri, V. T. Beroulle, P. Vuong, and S. Tedjini, "Considerations on the characterization and the modelization of ultra-wideband antennas," ICUWB 2007, 491-496, 2007.

7. Licul, S. and W. A. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Trans. Antennas Propagat., Vol. 53, 2882-2888, 2005.
doi:10.1109/TAP.2005.854533

8. Antoulas, A. C., Approximation of Large-Scale Dynamical Systems, Society for Industrial and Applied Mathematic, 2005.

9. Miller, E. K., "Model-based parameter estimation in electromagnetics. II. Applications to EM observables," IEEE Antennas Propag. Mag., Vol. 40, 51-65, 1998.
doi:10.1109/74.683542

10. Zhao, Z. Q., C.-H. Ahn, and L. Carin, "Nonuniform frequency sampling with active learning: Application to wide-band frequency-domain modeling and design," IEEE Trans. Antennas Propagat., Vol. 53, 3049-3057, 2005.
doi:10.1109/TAP.2005.854540

11. Meerbergen, K., "The Quadratic Arnoldi method for the solution of the quadratic eigenvalue problem," SIAM. J. Matrix Anal. Appl., Vol. 30, No. 4, 1463-1482, 2008.
doi:10.1137/07069273X

12. Makarov, S. N., Antenna and EM Modeling with Matlab, Wiley-Interscience, 2002.

13. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

14. Duroc, Y., V. Tan-Phu, and S. Tedjini, "A time/frequency model of ultrawideband antennas," IEEE Trans. Antennas Propagat., Vol. 55, 2342-2350, 2007.
doi:10.1109/TAP.2007.901834

15. Virga, K. L. and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z] or [Y ] matrix interpolation with the method of moments," IEEE Trans. Antennas Propagat., Vol. 47, 65-76, 1999.
doi:10.1109/8.752990

16. Newman, E. H., "Generation of wide-band data from the method of moments by interpolating the impedance matrix [EM problems]," IEEE Trans. Antennas Propagat., Vol. 36, 1820-1824, 1988.
doi:10.1109/8.14404

17. Tisseur, F. and K. Meerbergen, "The quadratic eigenvalue problem," SIAM Review, Vol. 43, 235-286, 2001.
doi:10.1137/S0036144500381988

18. Bai, Z. J. and Y. F. Su, "SOAR: A second-order arnoldi method for the solution of the quadratic eigenvalue problem," SIAM J. Matrix Anal. Appl., Vol. 26, 640-659, 2004.

19. Rommes, J. and N. Martins, "Efficient computation of transfer function dominant poles of large second-order dynamical systems," SIAM J. Sci. Comput., Vol. 30, 2137-2157, 2008.
doi:10.1137/070684562

20. Balmes, E., "Model reduction for systems with frequency dependent damping properties," International Modal Analysis Conference, 1996.

21. Persson, P. O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, 329-345, 2004.
doi:10.1137/S0036144503429121


© Copyright 2014 EMW Publishing. All Rights Reserved