PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 100 > pp. 37-54

HYBRID METHOD OF OBTAINING DEGREES OF FREEDOM FOR RADIAL AIRGAP LENGTH IN SRM UNDER NORMAL AND FAULTY CONDITIONS BASED ON MAGNETOSTATIC MODEL

By H. Torkaman and E. S. Afjei

Full Article PDF (528 KB)

Abstract:
In this paper, a new hybrid method of obtaining the degrees of freedom for redial airgap length in Switched Reluctance Motor operation under normal and faulty conditions based on magnetiostatic analysis is presented. At the beginning, this method goes through the magnetic design of the motor utilizing three dimensional (3-D) Finite Element Method (FEM) in order to consider the end effects as well as axial fringing field effects. The motor parameters, such as torque, flux linkage, flux density versus rotor position are precisely obtained. Then, a Multi Layered Perceptron Neural Network is designed by considering the nonlinear behavior of the motor parameters obtained under different modes of operatin. Using this network and the obtained parameters from FEM, an Objective Function (OF) for torque ripple with the aim of having a minimum mean square error is estimated. In addition, an improved Genetic Algorithm (GA) for the minimization the OF is also presented to determine the motor's operational regions. Finally, the legal intervals for different modes of motor operation are addressed.

Citation:
H. Torkaman and E. S. Afjei, "Hybrid method of obtaining degrees of freedom for radial airgap length in SRM under normal and faulty conditions based on magnetostatic model," Progress In Electromagnetics Research, Vol. 100, 37-54, 2010.
doi:10.2528/PIER09111108
http://www.jpier.org/PIER/pier.php?paper=09111108

References:
1. Afjei, E. and H. Torkaman, "The novel two phase field-assisted hybrid SRG: Magnetio static field analysis, simulation, and experimental confirmation," Progress In Electromagnetics Research B, Vol. 18, 25-42, 2009.
doi:10.2528/PIERB09082404

2. Torkaman, H. and E. Afjei, "Magnetio static field analysis regarding the effects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205

3. Torkaman, H. and E. Afjei, "Comprehensive magnetic field based study on effects of static rotor eccentricity in switched reluctance motor parameters utilizing three dimensional finite element," Electromagnetics Journal, Vol. 29, No. 5, 421-433, Taylor and Francis, 2009.
doi:10.1080/02726340902953354

4. Hudson, C. A., N. S. Lobo, and R. Krishnan, "Sensorless control of single switch-based switched reluctance motor drive using neural network," IEEE Transaction on Industrial Electronics, Vol. 55, No. 1, 321-329, Jan. 2008.
doi:10.1109/TIE.2007.903965

5. Kano, Y., T. Kosaka, and N. Matsui, Optimum design approach for two-phase switched reluctance compressor drive, IEEE International Electric Machines & Drives Conference, Vol. 1, 797-804, May 2007.

6. Morimoto, M., Application specific permanent magnet motors and reluctance motors, International Power Electronics Conference, Vol. 1, 241-246, 2000.

7. Wieczorek, J., O. Gol, and Z. Michalewicz, "An evolutionary algorithm for the optimal design of induction motors," IEEE Transaction on Magnetics, Vol. 34, No. 6, 3882-3887, 1998.
doi:10.1109/20.728298

8. Bianchi, N. and S. Bolognini, Blushless DC motor design: An optimization procedure based on genetic algorithm, Proc. of IEE EMD97, No. 444, 16-20, 1997.

9. Chai, K. and C. Pollock, Evolutionary computer controlled design of a reluctance motor drive system, Proc. of IEEE/IAS Annual Meeting, Vol. 3, 1480-1487, 2003.

10. Cho, D., H. Jung, and C. Lee, "Induction motor design for electric vehicle using a niching genetic algorithm," IEEE Transaction on Industry Applications, Vol. 37, No. 4, 994-999, 2001.
doi:10.1109/28.936389

11. Afjei, E., A. Seydatan, and H. Torkaman, "A new two phase bidirectional hybrid switched reluctance motor/field-assisted generator," Journal of Applied Science, Vol. 9, No. 4, 765-770, 2009.
doi:10.3923/jas.2009.765.770

12. Torkaman, H. and E. Afjei, "Comprehensive study of 2-D and 3-D finite element analysis of a switched reluctance motor," Journal of Applied Science, Vol. 8, No. 15, 2758-2763, 2008.
doi:10.3923/jas.2008.2758.2763

13. Afjei, E. and H. A. Toliyat, "A novel multilayer switched reluctance motor," IEEE Transaction on Energy Conversion, Vol. 17, No. 2, 217-221, 2002.
doi:10.1109/TEC.2002.1009471

14. Owatchaiphong, S., C. Carstensen, and R. De Doncker, Optimization of predesign of switched reluctance machines cross section using genetic algorithms, 7th International Conference on Power Electronics and Drive Systems (PEDS'07), 707-711, Nov. 2007.

15. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

16. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

17. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

18. Rostami, A. and A. Yazdanpanah-Goharriz, "A new method for classification and identification of complex fiber bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

19. Elmas, C. and T. Yigit, "Genetic algorithm based on-line tuning of a PI controller for a switched reluctance motor drive," Electric Power Components and Systems Journal, Vol. 35, No. 6, 675-691, Taylor & Francis, Jun. 2007.
doi:10.1080/15325000601139674

20. Riabi, M. L., R. Thabet, and M. Belmeguenai, "Rigorous design and efficient optimizattion of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 6, 15-33, 2007.
doi:10.2528/PIER06072103

21. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

22. Mahanti, G. K., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

23. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

24. Zhang, Y.-D. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

25. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

26. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

27. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

28. Chari, M. V. K., G. Bedrosian, J. D'Angelo, A. konrad, G. M. Cotzas, and M. R. Shah, "Electromagnetic field analysis for electrical machine design," Progress In Electromagnetics Research, Vol. 4, 159-211, 1991.

29. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608

30. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

31. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708

32. Li, J., D. Choi, and Y. Cho, "Analysis of rotor eccentricity in switched reluctance motor with parallel winding using FEM," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2851-2854, 2009.
doi:10.1109/TMAG.2009.2018694

33. Cameron, D. E., et al., "The origin and reduction of acoustic noise in doubly salient variable-reluctance motors," IEEE Transaction on Industrial Application, Vol. 28, No. 6, 1250-1255, Nov./Dec. 1992.
doi:10.1109/28.175275

34., MagNet CAD package: User manual, Infolytica Corporation Ltd., Montreal, Canada, Jan. 2007.

35. Guldemir, H., "Detection of air-gap eccentricity using line current spectrum of induction motors," Electric Power Systems Research Journal, Vol. 64, 109-117, Elsevier, 2003.

36. Sheth, N. K. and K. R. Rajagopal, "Effects of nonuniform air-gap on the torque characteristics of a switched reluctance motor," IEEE Transactions on Magnetics, Vol. 40, No. 4, 2032-2034, Jul. 2004.
doi:10.1109/TMAG.2004.832173

37. Nandi, S., H. A. Toliyat, and X. D. Li, "Condition monitoring and fault diagnosis of electrical motors --- A review," IEEE Transactions on Energy Conversion, Vol. 20, No. 4, 719-729, Dec. 2005.
doi:10.1109/TEC.2005.847955

38. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08070904

39. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

40. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

41. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309

42. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

43. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of pifas," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

44. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (Rbfnn)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

45. Singh, D., V. Srivastava, B. Pandey, and D. Bhimsaria, "Application of neural network with error correlation and time evolution for retrieval of soil moisture and other vegetation variables," Progress In Electromagnetics Research B, Vol. 15, 245-465, 2009.
doi:10.2528/PIERB09043003

46. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

47. Panda, D. K. K., A. Chakraborty, and S. R. Choudhury, "Analysis of co-channel interference at waveguide joints using multiple cavity modeling technique," Progress In Electromagnetics Research Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704

48. Lu, H. H., C. H. Lee, P. W. Ko, C. H. Kuo, C. C. Liu, H. B. Wu, and J. S. Shin, "Direct-detection bidirectional radio-on-DWDM transport systems," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 875-884, 2009.
doi:10.1163/156939309788355199

49. Zhang, Y.-J. and E.-P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

50. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a lossy rough surface cave using a high order time domain vector finite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408

51. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain decomposition method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 251-266, 2008.
doi:10.1163/156939308784160668

52. Zhang, Y., X. Wei, and E. Li, "Electromagnetic scattering from threedimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1549-1563, 2004.
doi:10.1163/1569393042954857


© Copyright 2014 EMW Publishing. All Rights Reserved