Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 104 > pp. 313-331


By H. Gao, K. Li, F. Kong, H. Xie, and J. Zhao

Full Article PDF (689 KB)

We study the characteristics of nano-optical antenna made of two gold nano-particles by three dimensional numerical calculations in visible and near infrared bands. To carry the computational burden and guarantee the precision and speed of a three dimensional FDTD calculation, adaptive mesh refinement technology is used. In this paper, we first highlight the concrete way of controlling the emitter position and orientation to fulfill the requirements of larger spontaneous emission enhancement. Then, we analyze the far field distribution and find that the far fied directivity is strongly influenced by surface plasmon polaritons (SPPs). Choosing the incident wavelength of 600 nm, we compute the decay rates and radiant efficiency as a function of antenna geometry limitations. Next, the particle aspect ratio is optimized, and we obtain that L/R = 4 is the best for our optical-antenna. Furthermore, we present a spectrum analysis. Around 5000 fold spontaneous emission enhancement is successfully achieved. Finally, we find a piecewise linearity relationship between the particle length and resonant wavelength.

H. Gao, K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.

1. Muhlschlegel, P., H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science, Vol. 308, 1607-1609, 2005.

2. Krenn, J. R., A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudnnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett., Vol. 82, No. 12, 2590-2593, 1999.

3. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, No. 5, 057401, 2003.

4. Nehl, C. L., H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano. Lett., Vol. 6, 683-688, 2006.

5. Fischer, H. and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express, Vol. 16, No. 12, 9144-9154, 2008.

6. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.

7. Kong, F., K. Li, H. Huang, B.-I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.

9. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.

10. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., Vol. 69, 681, 1946.

11. Drexhage, K. H., "Interaction of light with monomolecular dye layers," Prog. Opt., Vol. 12, 164, 1974.

12. Chance, R. R., A. Prock, and R. Silbey, "Molecularfluorescence and energy transfer near interfaces," Adv. Ch. Phys., Vol. 37, 1, 1978.

13. Ruppin, R., "Decay of an excited molecule near a small metal sphere," J. Chem. Phys., Vol. 76, 1681-1684, 1982.

14. Blanco, L. A. and F. J. Garcia de Abajo, "Spontaneous light emission in complex nanostructures," Phys. Rev. B, Vol. 69, No. 20, 205414, 2004.

15. Hulet, R. G., E. S. Hilfer, and D. Kleppner, "Inhibited spontaneous emission by a rydberg atom," Phys. Rev. Lett., Vol. 55, No. 20, 2137, 1985.

16. Xu, Y., J. S. Vu┬Ěckovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B, Vol. 16, 465, 1999.

17. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059, 1987.

18. Hermann, C. and O. Hess, "Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap," J. Opt. Soc. Am. B, Vol. 19, 3013-3018, 2002.

19. Femius Koenderink, A., L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, "Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals," Phys. Rev. Lett., Vol. 88, No. 14, 143903, 2002.

20. Rogobete, L., F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett., Vol. 32, No. 12, 1623-1625, 2007.

21. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New J. Phys., Vol. 10, 105015, 2008.

22. Kuhn, S., U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett., Vol. 97, No. 1, 017402-4, 2006.

23. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, No. 11, 113002-4, 2006.

24. Liu, Y. X. and C. D. Sarris, "AMR-FDTD: A dynamically adaptive mesh refinement scheme for the finite-difference time-domain technique," IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 134-137, 2005.

25. Berger, M. J. and J. R. Oliger, "Adaptive mesh refinement for hyperbolic partical differential equation," J. Comput. Phys., Vol. 53, 484-512, 1984.

26. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.

27. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

28. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.

29. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.

30. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, 363-379, 1996.

31. Agio, M., G. Mori, F. Kaminski, L. Rogobete, S. Kuhn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jackel, and H. H. Sol, "Engineering gold nanostructures to enhance the emission of quantum emitters," Proc. SPIE, Vol. 6717, 67170, 2007.

32. Taminiau, T. H., F. D Stefani, and N. F. V. Hulst, "Single emitters coupled to plasmonic nano-antennas: Angular emission and collection efficiency," New J. Phys., Vol. 10, 105005, 2008.

33. Huang, Y. and K. Boyle, "Popular antennas," Antennas: From Theory to Practice, 129-135, 2008.

© Copyright 2014 EMW Publishing. All Rights Reserved