Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 100 > pp. 381-396


By Q. Ye and F. Lu

Full Article PDF (229 KB)

The anisotropic spherical Wigner-Seitz (WS) cell model --- introduced to describe colloidal plasmas --- is investigated using the linearized Poisson-Boltzmann (PB) equation. As an approximation, the surface potential of the spherical macroparicle expanded in terms of the monopole (q) and the dipole (p) is considered as an anisotropic boundary condition of the linear PB equation. Here, the "apparent" moments q and p are the moments 'seen' in the microion cloud, respectively. Based on a new physical concept, the momentneutrality, the potential around the macroparticle can be solvable analytically if the relationship between the actual moment and the "apparent" moment can be obtained according to the momentneutrality condition in addition to the usual electroneutrality. The calculated results of the potential show that there is an attractive region in the vicinity of macroparticle when the corresponding dipole part of the potential dominates over the monopole part, and there is an attractive region and a repulsive region at the same time, i.e., a potential well, when the corresponding dipole part of the potential just comes into play. It provides the possibility and the conditions of the appearance of periodic structure of the colloidal plasmas, although it is a result of a simple theoretical model.

Q. Ye and F. Lu, "The anisotropic cell model in the colloidal plasmas," Progress In Electromagnetics Research, Vol. 100, 381-396, 2010.

1. Kepler, G. M. and S. Fraden, "Attractive potential between confined colloids at low ionic strength," Phys. Rev. Lett., Vol. 73, No. 2, 356-359, 1995.

2. Carbajal-Tinoco, M. D., F. Castro-Roman, and J. L. Arauz-Lara, "Static properties of confined colloidal suspensions," Phys. Rev. E, Vol. 53, No. 4, 3745-3749, 1996.

3. Crocker, J. C. and D. G. Grier, "Microscopic measurement of the pair interaction potential of charge-stabilized colloid," Phys. Rev. Lett., Vol. 73, No. 2, 352-355, 1994.

4. Crocker, J. C. and D. G. Grier, "When like charge attract: The effects of geometrical confinement on long-range colloidal interactions," Phys. Rev. Lett., Vol. 77, No. 9, 1897-1900, 1996.

5. Sogami, I. and N. Ise, "On the electrostatic interaction in macroionic solutions," J. Chem. Phys., Vol. 81, No. 12, 6320-6332, 1984.

6. Neu, J. C., "Wall-mediated forces between like-charged bodies in an electrolye," Phys. Rev. Lett., Vol. 82, No. 5, 1072-1074, 1999.

7. Sader, J. E. and D. Y. C. Chan, "Long-range electrostatic attractions between identically charged particles in confined geometries: An unresolved problem," J. Colloid Interface Sci., Vol. 213, 268-269, 1999.

8. Trizac, E. and J.-L. Raimbault, "Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects," Phys. Rev. E, Vol. 60, No. 6, 6530-6533, 1999.

9. Allahyarov, E., I. D. Amico, and H. Lowen, "Attraction between like-charged macroions by Coulomb depletion," Phys. Rev. Lett., Vol. 81, No. 6, 1334-1337, 1998.

10. Messina, R., C. Holm, and K. Kremer, "Strong attraction between charged spheres due to metastable ionized states," Phys. Rev. Lett., Vol. 85, No. 4, 872-875, 2000.

11. Squires, T. M. and M. P. Brenner, "Like-charge attraction and hydrodynamic interaction," Phys. Rev. Lett., Vol. 85, No. 23, 4976-4979, 2000.

12. Carbajal-Tinoco, M. D. and P. Gonzale-Mozuelos, "Effective attractions between like-charged colloidal particles," J. Chem. Phys., Vol. 117, No. 5, 2344-2350, 2002.

13. Han, Y. and D. G. Grier, "Confinement-induced colloidal attractions in equilibrium," Phys. Rev. Lett., Vol. 91, No. 3, 038302.1-038302.4, 2003.

14. Chu, J. H. and I. Lin, "Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas," Phys. Rev. Lett., Vol. 72, No. 25, 4009-4012, 1994.

15. Thomas, H., G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, "Plasma crystal: Coulomb crystallization in a dusty plasma,", Vol. 73, No. 5, 652-655, 1994.

16. Hayashi, Y. and S. Tachibana, "Observation of Coulomb-crystal formation from carbon particles growth in a methane plasma," Jpn. J. Appl. Phys., Vol. 33, No. 6A, L804-L806, 1994.

17. Melzer, A., T. Trottenberg, and A. Piel, "Experimental determination of the charge on dust particles forming Coulomb lattices," Phys. Lett. A, Vol. 191, No. 3-4, 301-307, 1994.

18. Vladimirov, S. V. and M. Nambu, "Attraction of charged particulates in plasmas with finite flows," Phys. Rev. E, Vol. 52, No. 3, R2172-R2174, 1995.

19. Nambu, M., S. V. Vladimirov, and P. K. Shukla, "Attractive forces between charged particulates in plasmas," Phys. Lett. A, Vol. 203, 40-42, 1995.

20. Takahashi, K., T. Oishi, K. I. Shimomai, Y. Hayashi, and S. Nishino, "Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations," Phys. Rev. E, Vol. 58, No. 6, 7805-7811, 1998.

21. Melzer, A., V. A. Schweigert, and A. Piel, "Transition from attractive to repulsive forces between dust molecules in a plasma sheath," Phys. Rev. Lett., Vol. 83, No. 16, 3194-3197, 1999.

22. Ishihara, O., S. V. Vladimirov, and N. F. Cramer, "Effect of a dipolar moment on the wake potential of a dust grain in a flowing plasma," Phys. Rev. E, Vol. 61, No. 6, 7246-7248, 2000.

23. Velegol, D. and P. K. Thwar, "Analytical model for the effect of surface charge nonuniformity on colloidal interactions," Langmuir, Vol. 17, 7687-7693, 2001.

24. Hoffmann, N., L. N. Likos, and J.-P. Hansen, "Linear screening of the electrostatic potential around spherical particles with nonspherical charge patterns," Molecular Physics, Vol. 102, No. 9-10, 857-867, 2004.

25. Lian, Z. J. and H. R. Ma, "Effective interaction of nonuniformly charged colloid spheres in a bulk electrolyte," J. Chem. Phys., Vol. 127, No. 10, 104507.1-104507.8, 2007.

26. Bordi, F., C. Cametti, S. Sennato, and D. Truzzolillo, "Strong repulsive interactions in polyelectrolyte-liposome cluster close to the ioselectric point: A sign of an arrested state," Phys. Rev. E, Vol. 76, No. 6, 061403.1-061403.1, 2007.

27. Truzzolillo, D., F. Bordi, F. Sciortino, and C. Cametti, "Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation," Eur. Phys. J. E, Vol. 29, 229-237, 2009.

28. Lee, H. C. and D. Y. Chen, "Phase diagram of crystals of dusty plasma," Phys. Rev. E, Vol. 56, No. 4, 4596-4607, 1997.

29. Mohideen, U., H. U. Rahman, M. A. Smith, M. Rosenberg, and D. A. Mendis, "Intergrain coupling in dusty-plasma Coulomb crystals," Phys. Rev. Lett., Vol. 81, No. 2, 349-352, 1998.

30. Daugherty, J. E., R. K. Porteous, and D. B. Graves, "Electrostatic forces on small particles in low-pressure discharges," J. Appl. Phys., Vol. 73, No. 4, 1617-1620, 1993.

31. Hamaguchi, S. and R. T. Farouki, "Polarization force on a charged particulate in a nonuniform plasma," Phys. Rev. E, Vol. 49, No. 5, 4430-4441, 1994.

32. Resendes, D. P., "Dipolar interaction in a colloidal plasma," Phys. Rev. E, Vol. 61, No. 1, 793-800, 2000.

33. Dassanayake, U., S. Fraden, and A. Van Blaaderen, "Structure of electroheological fluids," J. Chem. Phys., Vol. 112, No. 8, 3851-3858, 2000.

34. Gong, T., D. T. Wu, and D. W. M. Marr, "Electric field-reversible three-dimensional colloidal crystals," Langmuir, Vol. 19, No. 15, 5967-5970, 2003.

35. Lumsdon, S. O., E. W. Kaler, and O. D. Velev, "Two-dimensional crystallization of microspheres by a coplanar AC electric field," Langmuir, Vol. 20, No. 6, 2108-2116, 2004.

36. Basuray, S. and H.-C. Chang, "Induced dipoles and dielec-trophoresis of nanocolloids in electrolytes," Phys. Rev. E, Vol. 75, No. 6, 060501.1-060501.4, 2007.

37. Mittal, M., P. P. Lele, E. W. Kaler, and E. M. Furst, "Polarization and interactions of colloidal particles in ac electric field," J. Chem. Phys., Vol. 129, No. 6, 064513.1-064513.7, 2008.

38. Pieranski, P., "Two-dimensional interfacial colloidal crystals," Phys. Rev. Lett., Vol. 45, No. 7, 569-572, 1980.

39. Hurd, A. J., "The electrostatic interaction between interfacial colloidal particles," J. Phys. A: Math. Gen., Vol. 18, L1055-L1060, 1985.

40. Plain, B. A., L. Boufendi, J. P. Blondeau, and C. Laure, "Particle generation and behavior in a silane-argon low-pressure discharge under continuous or pulsed radio-frequency excitation," J. Appl. Phys., Vol. 70, No. 4, 1991-2000, 1991.

41. Tskhakaya, D. D. and P. K. Shukla, "Dipole-dipole interaction of dust grains in plasmas," AIP Conference Proceedings, Vol. 799, 59-68, 2005.

42. Yaroshenko, V. V., H. M. Thomas, and G. E. Morfill, "The 'dipole instability' in complex plasmas and its role in plasma crystal melting," New J. Phys., Vol. 8, No. 54, 1-11, 2006.

43. Chen, W., S. Tan, Z. Huang, T.-K. Ng, W. T. Ford, and P. Tong, "Measured long-ranged attractive interaction between charged polystyrene latex spheres at a water-air interface ," Phys. Rev. E, Vol. 74, No. 2, 021406.1-021406.1, 2006.

44. Melandso, F. and J. Goree, "Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft," Phys. Rev. E, Vol. 52, No. 5, 5312-5326, 1995.

45. Lapenta, G., "Dipole moments on dust particles immersed in anistropic plasmas," Phys. Rev. Lett., Vol. 75, No. 24, 4409-4412, 1995.

46. Lapenta, G. and J. U. Brackbill, "Simulation of plasma shielding of dust particles in anistropic plasmas," Phys. Scr., Vol. T75, 264-266, 1982.

47. Ivlev, A. V., G. Morfill, and V. E. Fortv, "Potential of a dielectric particle in a flow of a collisionless plasma," Phys. Plasmas, Vol. 6, No. 5, 1415-1420, 1999.

48. Hou, L. H., Y. N.Wang, and Z. L. Miskovic, "Interaction potential among dust grains in a plasma with ion flow," Phys. Rev. E, Vol. 64, No. 4, 046406.1-046406.7, 2001.

49. Alexander, S., P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone, "Charge renormalization, osmostic pressure, and bulk modulus of colloidal crystals: Theory," J. Chem. Phys., Vol. 80, No. 11, 5776-5781, 1984.

50. Stevens, M. J., M. L. Falk, and M. O. Robbins, "Interaction between charged spherical macroions," J. Chem. Phys., Vol. 104, No. 13, 5209-5219, 1996.

51. Bocquet, L., E. Trizac, and M. Aubouy, "Effective charge saturation in colloidal suspensions," J. Chem. Phys., Vol. 117, No. 17, 8138-8152, 2002.

52. Tellez, G. and E. Trizac, "On the bulk modulus of the cell model of charged macromolecules suspensions," J. Chem. Phys., Vol. 118, No. 7, 3362-3367, 2003.

53. Tamashiro, M. N. and H. Schiessel, "Where the linearized Poisson-Boltzmann cell model fails: Spurious phase separation in charged colloidal suspensions," J. Chem. Phys., Vol. 119, No. 3, 1855-1865, 2003.

54. Hsin, W. L., T.-Y. Wang, Y.-J. Sheng, and H.-K. Tsao, "Charge renormalization of charged spheres based on thermodynamic properties," J. Chem. Phys., Vol. 121, No. 11, 5494-5504, 2004.

55. Torres, A., G. Tellez, and R. Van Roij, "The polydisperse cell model: Nonlinear screening and charge renormalization in colloidal mixtures," J. Chem. Phys., Vol. 128, No. 15, 154906.1-154906.8, 2008.

56. Chatterjee, K. and J. Poggie, "A parallelized 3D floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation," Progress In Electromagnetics Research, Vol. 57, 237-252, 2006.

57. Ye, Q. and D. Tan, "Momentneutrality and dipole-screened model in the dusty plasma," J. Phys. D: Appl. Phys., Vol. 40, No. 16, 4836-4841, 2007.

© Copyright 2014 EMW Publishing. All Rights Reserved