PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 173-188

FDTD METHOD INVESTIGATION ON THE POLARIMETRIC SCATTERING FROM 2-D ROUGH SURFACE

By J. Li, L.-X. Guo, and H. Zeng

Full Article PDF (638 KB)

Abstract:
A polarimetric scattering from two-dimensional (2-D) rough surface is presented by the finite-difference time-domain (FDTD) algorithm. The FDTD calculations with sinusoidal and pulsed plane wave excitations are performed. As the sinusoidal FDTD is concerned, it is convenient to obtain the scattered angular distribution of normalized radar cross section (NRCS) from rough surface for a single frequency. And the advantage of pulsed FDTD is to calculate the frequency distribution of NRCS from rough surface in a scattered direction of interest. A single frequency scattering from rough surface by sinusoidal FDTD is validated by the result of Kirchhoff Approximation (KA). And the frequency response of rough surface by pulsed FDTD is verified by that of sinusoidal FDTD, which requires an individual FDTD run for every frequency. To save computation time, the MPI-based parallel FDTD method is adopted. And the computation time of parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, the polarimetric scattering of rough surface with the sinusoidal and pulsed FDTD illumination are presented and analyzed for different polarizations.

Citation:
J. Li, L.-X. Guo, and H. Zeng, " FDTD method investigation on the polarimetric scattering from 2 - d rough surface ," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104
http://www.jpier.org/PIER/pier.php?paper=09120104

References:
1. Bourlier, C., "Azimuthal harmonic coefficients of the microwave backscattering from a non-Gaussian ocean surface with the first-order SSA model," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 11, 2600-2611, 2004.
doi:10.1109/TGRS.2004.836874

2. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, Vol. 75, 357-381, 2007.
doi:10.2528/PIER07061202

3. Guo, L. X. and Z. S. Wu, "Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1219-1234, 2004.
doi:10.1163/1569393042955342

4. Torrungrueng, D., H. T. Chou, and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method," IEEE Trans.Geosci. Remote Sensing, Vol. 38, No. 4, 1656-1668, 2000.
doi:10.1109/36.851965

5. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 738-748, 1998.
doi:10.1109/36.673667

6. Xia, M. Y., C. H. Chan, S. Q. Li, B. Zhang, and L. Tsang, "An eĀ±cient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method," IEEE Trans. Antennas Propagat., Vol. 51, No. 6, 1142-1149, 2003.
doi:10.1109/TAP.2003.812238

7. Lesha, M. J. and F. J. Paoloni, "Transient scattering from arbitrary conducting surfaces by iterative solution of the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 8, 1139-1167, 1996.
doi:10.1163/156939396X01224

8. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 1, 59-66, 2004.
doi:10.1109/TGRS.2003.815670

9. Li, J., L. X. Guo, H. Zeng, and X..B. Han, "Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary," J. Opt. Soc. Am. A., Vol. 26, No. 6, 1494-1502, 2009.
doi:10.1364/JOSAA.26.001494

10. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition," Waves in Random and Complex Media, Vol. 19, No. 3, 418-429, 2009.
doi:10.1080/17455030902759068

11. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface," Waves in Random and Complex Media, Vol. 18, No. 4, 641-650, 2008.
doi:10.1080/17455030802302134

12. Guo, L. X., J. Li, and H. Zeng, "Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach," J. Opt. Soc. Am. A., Vol. 26, No. 11, 2383-2392, 2009.
doi:10.1364/JOSAA.26.002383

13. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

14. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, 94-103, 2001.
doi:10.1109/74.924608

15. Kuga, Y. and P. Phu, "Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces," Progress In Electromagnetics Research, Vol. 14, 37-88, 1996.

16. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media," Electromagnetics, Vol. 16, No. 4, 425-449, 1996.
doi:10.1080/02726349608908487

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, 2005.

18. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 582-588, 2000.
doi:10.1109/22.842030

19. Fung, A. K., M. R. Shah, and S. Tjuatja, "Numerical simulation of scattering from three-dimensional randomly rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 986-995, 1994.
doi:10.1109/36.312887

20. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 39, No. 4, 429-433, 1991.
doi:10.1109/8.81453

21. Kong, J. A., Electromagnetic Wave Theory, Wiley, New York, 1986.

22. Yu, W. H., Y. J. Liu, T. Su, N. T. Hunag, and R. Mittra, "A robust parallel conformal finite difference time-domain processing package using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 47, No. 3, 39-59, 2005.
doi:10.1109/MAP.2005.1532540

23. Ogilvy, J. A., Theory of Wave Scattering from Random Rough Surface, IOP Publishing, 1991.


© Copyright 2014 EMW Publishing. All Rights Reserved