PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 189-202

SIMULATION AND EXPERIMENTAL VERIFICATION OF W-BAND FINITE FREQUENCY SELECTIVE SURFACES ON INFINITE BACKGROUND WITH 3D FULL WAVE SOLVER NSPWMLFMA

By S. Islam, J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt

Full Article PDF (634 KB)

Abstract:
We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N2) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with the free space Millimeter Wave Vector Network Analyzer (MVNA).

Citation:
S. Islam, J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt, "Simulation and Experimental Verification of W-Band Finite Frequency Selective Surfaces on Infinite Background with 3D Full Wave Solver Nspwmlfma," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104
http://www.jpier.org/PIER/pier.php?paper=09122104

References:
1. Koers, G., Noise suppression in active millimeter wave imaging systems, Ph.D. dissertation, Universiteit Brussel, July 2006.

2. Islam, S., J. Stiens, G. Poesen, I. Jager, and R. Vounckx, "Passive frequency selective surface array as a diffuser for destroying millimeter wave coherence," Active and Passive Electronic Components, Vol. 2008, 2008.
doi:10.1155/2008/391745

3. Islam, S., J. Stiens, G. Poesen, I. Jager, and R. Vounckx, "Implementation of dynamic hadamard diffuser as a frequency selective surface for W-band active millimeter wave imaging," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1440-1444, June 2009.
doi:10.1002/mop.24363

4. Kastner, R. and R. Mittra, "Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches or perforations," IEEE Trans. Antennas Propagat., Vol. 35, No. 4, 372-378, 1987.
doi:10.1109/TAP.1987.1144113

5. Chen, C. C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 9, 627-632, 1970.
doi:10.1109/TMTT.1970.1127298

6. Chen, C. C., "Diffraction of electromagnetic waves by a conducting screen perforated with circular holes," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 5, 475-481, 1971.
doi:10.1109/TMTT.1971.1127548

7. Lee, S. W., "Scattering by dielectric-loaded screen," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 656-665, 1971.
doi:10.1109/TAP.1971.1140010

8. Montgomery, J. P., "Scattering by an infinite periodic array of thin conductors on a dielectric sheet," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 70-75, 1975.
doi:10.1109/TAP.1975.1141006

9. Agrawal, V. D. and W. A. Imbriale, "Design of a dichroic Cassegrain subreflector," IEEE Trans. Antennas Propagat., Vol. 27, No. 4, 466-473, 1979.
doi:10.1109/TAP.1979.1142119

10. Tsao, C. H. and R. Mittra, "Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem cross," IEEE Trans. Antennas Propagat., Vol. 32, No. 5, 478-486, 1984.
doi:10.1109/TAP.1984.1143348

11. Munk, B. A., "Scattering from surface waves on finite FSS," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 2001.
doi:10.1109/8.982461

12. Bekers, D., Finite antenna arrays: An eigencurrent approach, Ph.D. dissertation, Technische Universiteit Eindhoven, 2004.

13. Fostier, J. and F. Olyslager, "Full-wave electromagnetic scattering at extremely large 2D objects," IET Electronics Letters, Vol. 45, No. 5, 245-246, 2009.
doi:10.1049/el:20093122

14. Van Den Bulcke, S. and A. Franchois, "A full-wave 2.5D volume integral equation solver for 3D millimeter-wave scattering by large inhomogeneous 2D objects," IEEE Trans. Antennas Propagat., Vol. 75, No. 2, 535-545, Feb. 2009.
doi:10.1109/TAP.2008.2011385

15. Song, M., T. Weng, and W. C. Chew, "Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects," Journal of Computational Physics, Vol. 228, No. 3, 921-932, 2009.
doi:10.1016/j.jcp.2008.10.003

16. De Zaeytijd, J., A. Franchois, and J. M. Geffrin, "A new value picking regularization strategy --- Application to the 3D electromagnetic inverse scattering problem," IEEE Trans. Antennas Propagat., Vol. 57, No. 4, 1133-1149, 2009.
doi:10.1109/TAP.2009.2015823

17. Chew, W. C., J. Jin, E. Michielssen, and J. Song, Fast and EĀ±cient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

18. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Trans. Antennas Propagat., Vol. 56, 3752-3767, 2008.
doi:10.1109/TAP.2008.2007356

19. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetic Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001


© Copyright 2014 EMW Publishing. All Rights Reserved